Skip to main content

Pribnow Box Recognition and Melting by Escherichia coli RNA Polymerase

  • Chapter
Mechanisms of Transcription

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 11))

Abstract

The core RNA polymerases from bacterial and eukaryotic cells, which are homologous in structure and function (Allison et al. 1985; Biggs et al. 1985; Ahearn et al. 1987; Sweetser et al. 1987; Darst et al. 1989, 1991; Schultz et al. 1993; Polyakov et al. 1995), are catalytically active in RNA chain elongation but are incapable of promoter recognition and specific initiation. Promoter-specific transcription initiation requires additional protein factors. In bacteria, specific initiation by RNA polymerase (RNAP) requires a single polypeptide known as a σ factor, which binds to core RNAP to form the holoenzyme (Burgess et al. 1969; Travers and Burgess 1969). One primary σ factor directs the bulk of transcription during exponential growth. Specialized, alternative σ factors direct transcription of specific regulons during unusual physiological or developmental conditions (reviewed in Helmann and Chamberlin 1988; Gross et al. 1992). The primary and most of the alternative σ factors comprise a highly homologous family of proteins (Stragier et al. 1985; Gribskov and Burgess 1986) with four regions of highly conserved amino acid sequence (Fig. 1; reviewed in Lonetto et al. 1992). Based on the results of genetic and biochemical experiments, specific functions have been assigned to some of the conserved regions(summarized in Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahearn JM, Bartolomei MS, West ML, Cisek LJ, Corden JL (1987) Cloning and sequence analysis of the mouse genomic locus encoding the largest subunit of RNA polymerase II. J Biol Chem 262:10695–10705

    PubMed  CAS  Google Scholar 

  • Aiyar SE, Juang YL, Helmann JD, deHaseth PL (1994) Mutations in sigma factor that affect the temperature dependence of transcription from a promoter, but not from a mismatch bubble in double-stranded DNA. Biochemistry 33:11501–11506

    Article  PubMed  CAS  Google Scholar 

  • Allison LA, Moyle M, Shales M, Ingles CJ (1985) Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610

    Article  PubMed  CAS  Google Scholar 

  • Amouyal M, Buc H (1987) Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli. J Mol Biol 195:795–808

    Article  PubMed  CAS  Google Scholar 

  • Biggs J, Searles LL, Greenleaf AL (1985) Structure of the eukaryotic transcription apparatus: features of the gene for the largest subunit of Drosophila RNA polymerase II. Cell 42:611–621

    Article  PubMed  CAS  Google Scholar 

  • Buckle M, Geiselmann J, Kolb A, Buc H (1991) Protein-DNA cross-linking at the lac promoter. Nucleic Acids Res 19:833–840

    Article  PubMed  CAS  Google Scholar 

  • Burgess RR, Travers RR, Dunn JJ, Bautz EKF (1969) Factor stimulating transcription by RNA polymerase. Nature 221:43–44

    Article  PubMed  CAS  Google Scholar 

  • Cannon W, Missailidis S, Smith C, Cottier A, Austin S, Moore M, Buck M (1995) Core RNA polymerase and promoter DNA interactions of purified domains of σN: bipartite functions. J Mol Biol 248:781–803

    Article  PubMed  CAS  Google Scholar 

  • Carson M (1991) Ribbons 2.0. J Appl Crystallogr 24:958–961

    Article  Google Scholar 

  • Chang B-Y, Doi RH (1990) Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase σA factor. J Bacteriol 172:3257–3263

    PubMed  CAS  Google Scholar 

  • Chen YF, Helmann JD (1995) The Bacillus subtilis flagellar regulatory protein crD: overproduction, domain analysis and DNA-binding properties. J Mol Biol 249: 743–753

    Article  PubMed  CAS  Google Scholar 

  • Daniels D, Zuber P, Losick R (1990) Two amino acids in an RNA polymerase σ factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. Proc Natl Acad Sci USA 87:8075–8079

    Article  PubMed  CAS  Google Scholar 

  • Darst SA, Kubalek EW, Kornberg RD (1989) Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. Nature 340:730–732

    Article  PubMed  CAS  Google Scholar 

  • Darst SA, Edwards AM, Kubalek EW, Kornberg RD (1991) Three-dimensional structure of yeast RNA polymerase II at 16 Å resolution. Cell 66:121–128

    Article  PubMed  CAS  Google Scholar 

  • deHaseth PL, Helmann JD (1995) Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA. Mol Microbiol 16:817–824

    Article  PubMed  CAS  Google Scholar 

  • Dombroski AJ, Walter WA, Record MT, Siegele DA, Gross CA (1992) Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell 70:501–512

    Article  PubMed  CAS  Google Scholar 

  • Dombroski AJ, Walter WA, Gross CA (1993) Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev 7:2446–2455

    Article  PubMed  CAS  Google Scholar 

  • Gardella T, Moyle T, Susskind MM (1989) A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J Mol Biol 206:579– 590

    Article  PubMed  CAS  Google Scholar 

  • Gribskov M, Burgess RR (1983) Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene 26:109–118

    Article  PubMed  CAS  Google Scholar 

  • Gribskov M, Burgess RR (1986) Sigma factors from E. coli, B. subtilis, phase SPOl, and phage T4 are homologous proteins. Nucleic Acids Res 14:6745–6763

    Article  PubMed  CAS  Google Scholar 

  • Gross CA, Lonetto M, Losick R (1992) Bacterial sigma factors. In: Yamamoto K, McKnight S (eds) Transcriptional regulation, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 129–176

    Google Scholar 

  • Harley CB, Reynolds RP (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361

    Article  PubMed  CAS  Google Scholar 

  • Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Article  PubMed  Google Scholar 

  • Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872

    Article  PubMed  CAS  Google Scholar 

  • Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser de-sorption/ionization mass spectrometry of biopolymers. Anal Chem 63:1193A– 1203A

    Article  Google Scholar 

  • Hilton MD, Whiteley HR (1985) UV cross-linking of the Bacillus subtilis RNA polymerase to DNA in promoter and non-promoter complexes. J Biol Chem 260:8121–8117

    PubMed  CAS  Google Scholar 

  • Hinkle DC, Chamberlin MJ (1972) Studies of the binding of Escherichia coli RNA polymerase to DNA. I. The role of sigma subunit in site selection. J Mol Biol 70:157–185

    Article  PubMed  CAS  Google Scholar 

  • Jones CH, Moran CPJ (1992) Mutant σ factor blocks transition between promoter binding and initiation of transcription. Proc Natl Acad Sci USA 89:1958–1962

    Article  PubMed  CAS  Google Scholar 

  • Juang Y-L, Helmann JD (1994) A promoter melting region in the primary sigma factor of Bacillus subtilis: identification of functionally important aromatic amino acids. J Mol Biol 235:1470–1488

    Article  PubMed  CAS  Google Scholar 

  • Juang Y-L, Helmann JD (1995) Pathway of promoter melting by Bacillus subtilis RNA polymerase at a stable RNA promoter: effects of temperature, δprotein, and σ factor mutations. Biochemistry 34:8465–8473

    Article  PubMed  CAS  Google Scholar 

  • Kenney TJ, York K, Youngman P, Moran CPJ (1989) Genetic evidence that RNA polymerase associated with σA factor uses a sporulation-specific promoter in Bacillus subtilis. Proc Natl Acad Sci USA 86:9109–9113

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard K, Buc H, Spassky A, Wang JC (1983) Mapping of single-stranded regions in duplex DNA at the sequence level: single-strand-specific cytosine methylation in RNA polymerase-promoter complexes. Proc Natl Acad Sci USA 80:2544–2548

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Malloch RA, Fujita N, Smillie DA, Ishihama A, Hayward RS (1993) The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an “extended minus 10” promoter. J Mol Biol 232:406–418

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Grimes B, Fujita N, Makino K, Malloch RA, Hayward RS, Ishihama A (1994) Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. J Mol Biol 235:405–413

    Article  PubMed  CAS  Google Scholar 

  • Lesley SA, Burgess RR (1989) Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. Biochemistry 28:7728–7734

    Article  PubMed  CAS  Google Scholar 

  • Lesley SA, Brow MAD, Burgess RR (1991) Use of in vitro protein synthesis from polymerase chain reaction-generated templates to study interactions of Escherichia coli transcription factors with core RNA polymerase and for epitope mapping of monoclonal antibodies. J Biol Chem 266:2632–2638

    PubMed  CAS  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    PubMed  CAS  Google Scholar 

  • Losick R, Pero J (1981) Cascades of sigma factors. Cell 25:582–584

    Article  PubMed  CAS  Google Scholar 

  • Lowe PA, Hager DA, Burgess RR (1979) Purification and properties of the σ subunit of Escherichia coli DNA-dependent RNA polymerase. Biochemistry 18:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Malhotra A, Severinova E, Darst SA (1996) Crystal structure of a σ70 subunit fragment from Escherichia coli RNA polymerase. Cell 87:127–136

    Article  PubMed  CAS  Google Scholar 

  • Nagai K, Oubridge C, Jessen TH, Li J, Evans PR (1990) Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348:515–520

    Article  PubMed  CAS  Google Scholar 

  • Park CS, Hillel Z, Wu C-W (1980) DNA strand specificity in promoter recognition by RNA polymerase. Nucleic Acids Res 8:5895–5912

    Article  PubMed  CAS  Google Scholar 

  • Polyakov A, Severinova E, Darst SA (1995) Three-dimensional structure of Escherichia coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. Cell 83:365–373

    Article  PubMed  CAS  Google Scholar 

  • Ring BZ, Roberts JW (1994) Function of a nontranscribed DNA strand site in transcription elongation. Cell 78:317–324

    Article  PubMed  CAS  Google Scholar 

  • Ring BZ, Yarnell WS, Roberts JW (1996) Function of E. coli RNA polymerase sigma factor σ70 in promoter-proximal pausing. Cell 86:485–493

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Roberts JW (1996) Base-specific recognition of the nontemplate strand of promoter DNA by E. coli RNA polymerase. Cell: 86:495–501

    Article  PubMed  CAS  Google Scholar 

  • Rong JC, Helmann JD (1994) Genetic and physiological studies of Bacillus subtilis σA mutants defective in promoter melting. J Bacteriol 176:5218–5224

    PubMed  CAS  Google Scholar 

  • Schultz P, Celia H, Riva M, Sentenac A, Oudet P (1993) Three-dimensional model of yeast RNA polymerase I determined by electron microscopy of two-dimensional crystals. EMBO J 12:2601–2607

    PubMed  CAS  Google Scholar 

  • Severinov K, Fenyö D, Severinova E, Mustaev A, Chait BT, Goldfarb A, Darst SA (1994) The sigma subunit conserved region 3 is part of “5′-face” of active center of Escherichia coli RNA polymerase. J Biol Chem 269:20826–20828

    PubMed  CAS  Google Scholar 

  • Severinova E, Severinov K, Fenyö D, Marr M, Brody EN, Roberts JW, Chait BT, Darst SA (1996) Domain organization of the Escherichia coli RNA polymerase σ70 subunit. J Mol Biol 263:637–647

    Article  PubMed  CAS  Google Scholar 

  • Shamoo Y, Friedman AM, Parsons MR, Königsberg WH, Steitz TA (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to NA. Nature 376:362–366

    Article  PubMed  CAS  Google Scholar 

  • Shuler MF, Tatti KM, Wade KH, Moran CPJ (1995) A single amino acid substitution in σE affects its ability to bind core RNA polymerase. J Bacteriol 177:3687–3694

    PubMed  CAS  Google Scholar 

  • Siebenlist U, Simpson RB, Gilbert W (1980) E. coli RNA polymerase interacts homologously with two different promoters. Cell 20:269–281

    Article  PubMed  CAS  Google Scholar 

  • Siegele DA, Hu JC, Walter WA, Gross CA (1989) Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J Mol Biol 206:591–603

    Article  PubMed  CAS  Google Scholar 

  • Simpson RB (1979) The molecular topology of RNA polymerase-promoter interaction. Cell 18:277–285

    Article  PubMed  CAS  Google Scholar 

  • Spassky A, Rimsky S, Buc H, Busby S (1988) Correlation between the conformation of Escherichia coli -10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J 7:1871–1879

    PubMed  CAS  Google Scholar 

  • Stragier P, Parsot C, Bouvier J (1985) Two functional domains conserved in major and alternate bacterial sigma factors. FEBS Lett 187:11–15

    Article  PubMed  CAS  Google Scholar 

  • Sweetser D, Nonet M, Young RA (1987) Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci USA 84:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Tatti KM, Jones CH, Moran CPJ (1991) Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. J Bacteriol 173:7828–7833

    PubMed  CAS  Google Scholar 

  • Travers AA (1990) Why bend DNA? Cell 60:177–180

    Article  PubMed  CAS  Google Scholar 

  • Travers AA, Burgess RR (1969) Cyclic re-use of the RNA polymerase sigma factor. Nature 222:537–540

    Article  PubMed  CAS  Google Scholar 

  • Waldburger C, Gardella T, Wong R, Susskind MM (1990) Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J Mol Biol 215:267– 276

    Article  PubMed  CAS  Google Scholar 

  • Wilson J (1991) The use of monoclonal antibodies and limited proteolysis in elucidation of structure-function relationships in proteins. Methods Biochem Anal 35:207–250

    Article  PubMed  CAS  Google Scholar 

  • Zhou YN, Walter WA, Gross CA (1992) A mutant sigma 32 with a small deletion in conserved region 3 of sigma has reduced affinity for core RNA polymerase. J Bacteriol 174:5005–5012

    PubMed  CAS  Google Scholar 

  • Zuber P, Healy J, Carter HL, III, Cutting S, Moran CP Jr, Losick R (1989) Mutation changing the specificity of an RNA polymerase sigma factor. J Mol Biol 206:605– 614

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Darst, S.A., Roberts, J.W., Malhotra, A., Marr, M., Severinov, K., Severinova, E. (1997). Pribnow Box Recognition and Melting by Escherichia coli RNA Polymerase. In: Eckstein, F., Lilley, D.M.J. (eds) Mechanisms of Transcription. Nucleic Acids and Molecular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60691-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60691-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64509-9

  • Online ISBN: 978-3-642-60691-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics