Skip to main content

Acetylation, Activation, and Toxicity: The Role of ADA/GCN5 Complex in Transcription

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 11))

Abstract

The activation of transcription is a fundamental means of gene regulation. In eukaryotes a key component involved in transcriptional activation is the transcriptional activator. The activator functions by virtue of two, often separable, domains. The DNA binding domain is necessary for the activator to bind to specific DNA sequences found near the gene(s) which it regulates. The other domain, the activation domain, mediates the stimulation of transcription of that nearby gene (Hope and Struhl 1986). The mechanism by which these activation domains influence the rate of transcription has been the focus of much research over the last decade.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlev NA, Candau R, Wang L, Darpino P, Silverman N, Berger SL (1995) Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J Biol Chem 270: 19337–19334

    Article  PubMed  CAS  Google Scholar 

  • Berger SL, Cress WD, Cress A, Triezenberg SJ, Guarente L (1990) Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61:1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Berger SL, Piña B, Silverman N, Marcus GA, Agapite J, Regier JL, Triezenberg SJ, Guarente L (1992) Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251—265

    Article  PubMed  CAS  Google Scholar 

  • Brandl CJ, Furlanetto AM, Martens J A, Hamilton K (1993) Characterization of NGG1, a novel yeast gene required for glucose repression of GAL4p-regulated transcription. EMBO J 12:5255–5265

    PubMed  CAS  Google Scholar 

  • Brandl CJ, Martens JA, Margaliot A, Stenning D, Furlanetto AM, Saleh A, Hamilton KS, Genereaux J (1996) Structure/functional properties of the yeast dual regulator protein NGG1 that are required for glucose repression. J Biol Chem 271:9298–9306

    Article  PubMed  CAS  Google Scholar 

  • Brownell JE, Allis CD (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci USA 92:6364–6368

    Article  PubMed  CAS  Google Scholar 

  • Brownell JE, Allis CD (1996) Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6:176–185

    Article  PubMed  CAS  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    Article  PubMed  CAS  Google Scholar 

  • Candau R, Berger SL (1996) Structural and functional analysis of yeast putative adaptors. J Biol Chem 217:5237–5245

    Google Scholar 

  • Candau R, Moore PA, Wang L, Barlev N, Ying CY, Rosen CA, Berger SL (1996) Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol Cell Biol 16:593–602

    PubMed  CAS  Google Scholar 

  • Chen JL, Attardi LD, Verrijzer CP, Yokomori K, Tjian R (1994) Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79:93–105

    Article  PubMed  CAS  Google Scholar 

  • Chrivia JC, Kwok RPS, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859

    Article  PubMed  CAS  Google Scholar 

  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (1993) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8:869–884

    Article  Google Scholar 

  • Falvo JV, Thanos D, Maniatis T (1995) Reversal of intrinsic DNA bends in the INFβgene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 83:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos T, Thireos G (1992) Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11:4145–4152

    PubMed  CAS  Google Scholar 

  • Gill G, Ptashne M (1988) Negative effect of the transcriptional activator GAL4. Nature 334:721–724

    Article  PubMed  CAS  Google Scholar 

  • Goodrich J A, Tjian R (1994) TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr Opin Cell Biol 6:403–409

    Article  PubMed  CAS  Google Scholar 

  • Goodrich JA, Hoey T, Thut CJ, Admon A, Tjian R (1993) Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75:519–530

    Article  PubMed  CAS  Google Scholar 

  • Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB (1992) The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 20:2603

    Article  PubMed  CAS  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402

    PubMed  CAS  Google Scholar 

  • Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNasel sensitivity in the chicken β-globin chromosomal domain. EMBO J 13:1823–1320

    PubMed  CAS  Google Scholar 

  • Hengartner CJ, Thompson CM, Zhang J, Chao DM, Liao SM, Koleske AJ, Okamura S, Young RA (1995) Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 9:897–910

    Article  PubMed  CAS  Google Scholar 

  • Hope I, Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4, of yeast. Cell 46:885–894

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi J, Silverman N, Marcus G, Guarente L (1995) ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol Cell Biol 15:1203–1209

    PubMed  CAS  Google Scholar 

  • Ingles CJ, Shales M, Cress WD, Triezenberg SJ, Greenblatt J (1991) Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature 351:588–590

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RJ III, Flanagan PM, Kornberg RD (1990) A novel mediator between activa­tor proteins and the RNA polymerase II transcription apparatus. Cell 61:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Hashimote S, Kelleher RJ, Flanagan PM, Kornberg RD, Horikoshi M, Roeder RG (1994) Effects of activation-defective TBP mutations on transcrip­tional initiation in yeast. Nature 369:252–255

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Green MR (1991) Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Maldonado E, Reinberg D, Green MR (1991) Binding of general transcription factor TFIIB to an acidic activating region. Nature 353:569–571

    Article  PubMed  CAS  Google Scholar 

  • Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L (1994) Functional similarity and physical associatin between GCN5 and ADA2: putative transcriptional adaptors. EMBO J 13:4807–4815

    PubMed  CAS  Google Scholar 

  • Marcus GA, Horiuchi J, Silverman N, Guarente L (1996) ADA5/SPT20 links the ADA and SPT genes involved in yeast transcription. Mol Cell Biol 16:3197–3205

    PubMed  CAS  Google Scholar 

  • Moqtaderi Z, Bai Y, Poon D, Weil PA, Struhl K (1996) TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383:188–192

    Article  PubMed  CAS  Google Scholar 

  • Paranjape SM, Kamakaka RT, Kadonaga JT (1994) Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 63:265–297

    Article  PubMed  CAS  Google Scholar 

  • Paranjape SM, Krumm A, Kadonaga JT (1995) HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcriptional initiation. Genes Dev 9:1978–1991

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Tamkum JW (1995) The SWI-SNF complex: a chromatin remodeling machine? TIBS 20:146

    Google Scholar 

  • Piña B, Berger S, Marcus GA, Silverman N, Agapite J, Guarente L (1993) ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol Cell Biol 13:5981–5989

    PubMed  Google Scholar 

  • Pugh BF, Tjian R (1990) Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Roberts S, Winston F (1996) SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharo-myces cerevisiae. Mol Cell Biol 16:3206–3213

    PubMed  CAS  Google Scholar 

  • Roberts SGE, Green MR (1994) Activator-induced conformational change in general transcription factor TFIIB. Nature 371:717–720

    Article  PubMed  CAS  Google Scholar 

  • Roberts SGE, Ha I, Maldonado E, Reinberg D, Green MR (1993) Interaction between an acidic activator and transcription factor IIB is required for transcriptional activation. Nature 363:741–744

    Article  PubMed  CAS  Google Scholar 

  • Roth SY, Allis CD (1996) The subunit-exchange model of histone acetylation. Trends Cell Biol 6:371–375

    Article  PubMed  CAS  Google Scholar 

  • Sauer F, Hansen SK, Tjian R (1995a) DNA template and activator-coactivator requirements for transcriptional synergism by Drosophila bicoid. Science 270: 1825–1828

    Article  PubMed  CAS  Google Scholar 

  • Sauer F, Hansen SK, Tjian R (1995b) Multiple TAFIIs directing synergistic activation of transcription. Science 270:1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Shykind BM, Kim J, Sharp PA (1995) Activation of the TFIID-TFIIA complex with HMG-2 as coactivator. Genes Dev 9:1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Silverman N (1996) Genetic and biochemical characterization of the ADAs: a transcriptional adaptor complex. PhD Thesis, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Silverman N, Agapite J, Guarente L (1994) Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc Natl Acad Sci USA 91:11665–11668

    Article  PubMed  CAS  Google Scholar 

  • Stringer KF, Ingles CJ, Greenblatt J (1990) Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345:783–786

    Article  PubMed  CAS  Google Scholar 

  • Thanos D, Maniatis T (1995) Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Walker SS, Reese JC, Apone LM, Green MR (1996) Transcription activation in cells lacking TAFIIs. Nature 383:185–188

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Chao DM, Imbalzano AN, Schnitzler GR, Kingston RE, Young RA (1996) RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84:235–244

    Article  PubMed  CAS  Google Scholar 

  • Winston F (1992) Analysis of SPT genes: a genetic approach toward analysis of TFIID, histones, and other transcription factors of yeast. In: McKnight SL, Yamamoto KR (eds) Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harber, pp 1271–1293

    Google Scholar 

  • Wolffe A, Pruss D (1996) Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84:817–819

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1994) Transcription: in tune with histones. Cell 77:13–16

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Ogryzko V, Nishikawa J, Howard J, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silverman, N., Guarente, L. (1997). Acetylation, Activation, and Toxicity: The Role of ADA/GCN5 Complex in Transcription. In: Eckstein, F., Lilley, D.M.J. (eds) Mechanisms of Transcription. Nucleic Acids and Molecular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60691-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60691-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64509-9

  • Online ISBN: 978-3-642-60691-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics