Skip to main content

Antirepression, Potentiation and Activation of Promoters in Reconstituted Chromatin

  • Chapter
Mechanisms of Transcription

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 11))

Abstract

The amount of genetic information that higher eukaryotes need to propagate through generations is huge compared with that of prokaryotes. Consequently, large amounts of genomic DNA have to be packaged into the relatively small mucleus of a eukaryotic cell. The Greek word for “packaging” is the composite word “συσκευάζω” (συν + σκευάζω) which means “prepare together”. Accordingly, packaging of DNA has to meet two seemingly opposing requirements: first, DNA must be condensed (by a factor of approximately 4 × 105) in order to fit the limited nuclear volume, and second, it needs to be “prepared” in such a way that it can still function as a substrate for the nuclear machineries that replicate, transcribe, recombine and repair the genome. These two prerequisites are met by the chromatin organization of eukaryotic genomes. Chromatin is a loosely defined term describing the association of histones and non-histone proteins with DNA in a nucleus. The unit of chromatin is the nucleosome: an octamer of histones formed by the combination of an H3 and H4 histone heterotetramer and two heterodimers of histones H2A and H2B around which DNA winds in approximately two turns. A fifth type of histone, most commonly histone HI, interacts with the nucleosome body and the linker DNA that connects neighbouring nucleosomes. Arrays of nucleosomes are further folded into higher-order structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almouzni G, Méchali M (1988) Assembly of spaced chromatin. Involvement of ATP and DNA topoisomerase activity. EMBO J 7:4355–4365

    PubMed  CAS  Google Scholar 

  • Almouzni G, Wolffe AP (1993) Nuclear assembly, structure and function: the use of Xenopus in vitro systems. Exp Cell Res 205:1–15

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Cantor CR (1990) Nucleosome assembly of simian virus 40 DNA in a mammalian cell extract. Mol Cell Biol 10:2863–2873

    PubMed  CAS  Google Scholar 

  • Becker PB (1994) The establishment of active promoters in chromatin. BioEssays 16:541–547

    Article  PubMed  CAS  Google Scholar 

  • Becker PB, Wu C (1992) Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12:2241–2249

    PubMed  CAS  Google Scholar 

  • Becker PB, Rabindran SR, Wu C (1991) Heat shock-regulated transcription in vitro from a chromatin template. Proc Natl Acad Sci USA 88 :4109–4113

    Article  PubMed  CAS  Google Scholar 

  • Blank TA, Becker PB (1995) Electrostatic mechanism of nucleosome spacing. J Mol Biol 252:305–313

    Article  PubMed  CAS  Google Scholar 

  • Blank TA, Becker PB (1996) The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J Mol Biol 260:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Blank TA, Sandaltzopoulos R, Becker PB (1997) Biochemical analysis of chromatin structure and function using Drosophila embryo extracts. Methods, a companion to Methods in Enzymology 12, in press

    Google Scholar 

  • Bouvet P, Dimitrov S, Wolffe AP (1994) Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev 8: 1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Brou C, Kuhn A, Staub A, Chaudhary S, Grummt I, Davidson I, Tora L (1993) Sequence-specific transcription factors counteract topoisomerase II-mediated inhibition of in vitro transcription by RNA polymerase I and II. Nucleic Acids Res 21:4011–4018

    Article  PubMed  CAS  Google Scholar 

  • Brown SA, Imbalzano AN, Kingston RE (1996) Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev 10:1479–1490

    Article  PubMed  CAS  Google Scholar 

  • Brownell JE, Zhou T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    Article  PubMed  CAS  Google Scholar 

  • Bulger M, Ito T, Kamakaka RT, Kadonaga JT (1995) Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein. Proc Natl Acad Sci USA 92:11720–11730

    Article  Google Scholar 

  • Buratowski S (1994) The basics of basal transcription by RNA polymerase II. Cell 77:1–3

    Article  PubMed  CAS  Google Scholar 

  • Burnol A, Margottin F, Huet J, Almouzni G, Prioleau M, Mechali M, Sentenac A (1993) TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362:475–477

    Article  PubMed  CAS  Google Scholar 

  • Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT (1991) Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251:643–649

    Article  PubMed  CAS  Google Scholar 

  • Dammann R, Lucchini R, Koller T, Sogo JM (1993) Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 21:2331–2338

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov S, Wolffe A (1995) Chromatin and nuclear assembly: experimental approaches towards the reconstitution of transcriptionally active and silent states. Biochim Biophys Acta 1260:1–13

    PubMed  Google Scholar 

  • Elgin SCR (1988) The formation and function of DNase I hypersensitive sites in the process of gene activation. J Biol Chem 263:19259–19262

    PubMed  CAS  Google Scholar 

  • Felts SJ, Weil PA, Chalkley R (1990) Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Mol Cell Biol 10:2390–2401

    PubMed  CAS  Google Scholar 

  • Gerlach VL, Whitehall SK, Geiduschek EP, Brown DA (1995) TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts. Mol Cell Biol 15:1455–1466

    PubMed  CAS  Google Scholar 

  • Gottesfeld J, Bloomer L (1982) Assembly of transcriptionally active 5S RNA gene chromatin in vitro. Cell 28:781–791

    Article  PubMed  CAS  Google Scholar 

  • Kamakaka RT, Bulger M, Kadonaga JT (1993) Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication. Genes Dev 7:1779–1795

    Article  PubMed  CAS  Google Scholar 

  • Kerrigan LA, Croston GE, Lira LM, Kadonaga JT (1991) Sequence-specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. J Biol Chem 266:574–582

    PubMed  CAS  Google Scholar 

  • Kingston R, Bunker C, Imbalzano AN (1996) Repression and activation by multi-protein complexes that alter chromatin structure. Genes Dev 10:905–920

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Grummt I (1992) Dual role of the nucleolar transcription factor UBF: trans-activator and antirepressor. Proc Natl Acad Sci USA 89:7340–7344

    Article  PubMed  CAS  Google Scholar 

  • Landsberger N, Wolffe A (1995) Role of chromatin and Xenopus laevis heat shock transcription factor in regulation of transcription from the X Laevis hsp70. promoter in vivo. Mol Cell Biol 15:6013–6024

    PubMed  CAS  Google Scholar 

  • Längst G, Blank TA, Becker PB, Grummt I (1997) Transcription termination factor TTF-I mediates chromatin remodeling and activates RNA polymerase I transcription on nucleosomal templates EMBOJ 16:760–768

    Article  Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    Article  PubMed  CAS  Google Scholar 

  • Lis JT, Wu C (1994) Transcriptional regulation of heat shock genes. In: Conaway RV, Conaway JW (eds) Transcription: mechanisms and regulation. Raven Press, New York, pp 459–475

    Google Scholar 

  • Loo S, Rine J (1995) Silencing and heritable domains of gene expression. Annu Rev Cell Dev Biol 1995:519–548

    Article  Google Scholar 

  • Lucchini R, Sogo JM (1995) Replication of transcriptionally active chromatin. Nature 374:276–280

    Article  PubMed  CAS  Google Scholar 

  • Marsolier M, Tanaka S, Livingstone-Zatchej M, Grunstein M, Thoma F, Sentenac A (1995) Reciprocal interferences between nucleosomal organisation and transcriptional activity of the yeast SNR6 gene. Genes Dev 9:410–422

    Article  PubMed  CAS  Google Scholar 

  • Owen-Hughes T, Workman JL (1994) Experimental analysis of chromatin function in transcription control. Crit Rev Euk Gen Expr 1:1–39

    Google Scholar 

  • Paranjape S, Krumm A, Kadonaga J (1995) HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation. Genes Dev 9:1978–1991

    Article  PubMed  CAS  Google Scholar 

  • Paranjape SM, Kamakaka RT, Kadonaga JT (1994) Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 63: 265–297

    Article  PubMed  CAS  Google Scholar 

  • Paule MR (1994) Transcription of ribosomal RNA by eukaryotic RNA polymerase I. In: Conaway RV, Conaway JW (eds) Transcription: mechanisms and regulation. Raven Press, New York, pp 83–106

    Google Scholar 

  • Pazin MJ, Sheridan PL, Cannon K, Cao Z, Keck JG, Kadonaga JT, Jones KA (1996) NF-kappaB-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev 10:37–49

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Tamkun JW (1995) The SWI-SNF complex: a chromatin remodeling machine? TIBS 20:143–146

    PubMed  CAS  Google Scholar 

  • Roberts S, Choy B, Walker S, Lin Y, Green M (1995) A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr Biol 5:508–519

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Campos A, Shimamura A, Worcel A (1989) Assembly and properties of chromatin containing histone H1. J Mol Biol 209:135–150

    Article  PubMed  CAS  Google Scholar 

  • Sandaltzopoulos R, Blank T, Becker PB (1994) Transcriptional repression by nucleo-somes but not H1 in reconstituted preblastoderm Drosophila chromatin. EMBO J 13:373–379

    PubMed  CAS  Google Scholar 

  • Sandaltzopoulos R, Mitchelmore C, Bonte E, Wall G, Becker PB (1995) Dual regulation of the Drosophila hsp26 promoter in vitro. Nucleic Acids Res 23:2479–2487

    Article  PubMed  CAS  Google Scholar 

  • Sheridan P, Sheline C, Cannon K, Voz M, Pazin M, Kadonaga J, Jones K (1995) Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev 9:2090–2104

    Article  PubMed  CAS  Google Scholar 

  • Shimamura A, Tremethick D, Worcel A (1988) Characterization of the repressed 5S DNA minichromosomes assembled in vitro with a high-speed supernatant of Xenopus laevis oocytes. Mol Cell Biol 8:4257–4269

    PubMed  CAS  Google Scholar 

  • Shimamura A, Sapp M, Rodriguez-Campos A, Worcel A (1989) Histone H1represses transcription from minichromosomes assembled in vitro. Mol Cell Biol 9:5573–5583

    PubMed  CAS  Google Scholar 

  • Stunkel W, Kober I, Kauer M, Taimor G, Scifart KH (1995) Human TFIIIA alone is sufficient to prevent nucleosomal repression of a homologous 5S gene. Nucleic Acids Res 23:109–116

    Article  PubMed  CAS  Google Scholar 

  • Tremethick D, Zucker D, Worcel A (1990) The transcription complex of the 5S RNA gene, but not transcription factor IIIA alone, prevents nucleosomal repression of transcription. J Biol Chem 265:5014–5023

    PubMed  CAS  Google Scholar 

  • Trieschmann L, Alfonso PJ, Grippa MP, Wolffe A, Bustin M (1995) Incorporation of chromosomal proteins HMG-14/-17 into nacent nucleosomes induces an extended chromatin conformation and enhances the utilization of active transcription complexes. EMBO J 14:1478–1489

    PubMed  CAS  Google Scholar 

  • Tsukiyama T, Wu C (1995a) ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140kD subunit of the nucleosome remodeling factor. Cell 83:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama T, Wu C (1995b) Purification of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525–532

    Article  PubMed  CAS  Google Scholar 

  • Turner BM, O’Neill LP (1995) Histone acetylation in chromatin and chromosomes. Semin Cell Biol 6:229–236

    Article  PubMed  CAS  Google Scholar 

  • Tyree CM, George CP, Lira-DeVito LM, Wampler SL, Dahmus ME, Zawle L, Kadonaga JT (1993) Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev 7:1254–1265

    Article  PubMed  CAS  Google Scholar 

  • Van Lint C, Emiliani S, Ott M, Verdin E (1996) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15:1112–1120

    PubMed  Google Scholar 

  • Varga-Weisz PD, Becker PB (1995) Transcription factor-mediated chromatin remodelling: mechanisms and models. FEBS Lett 369:118–121

    Article  PubMed  CAS  Google Scholar 

  • Varga-Weisz PD, Blank TA, Becker PB (1995) Energy-dependent chromatin accessibility and nucleosome mobility in a cell-free system. EMBO J 14:2209–2216

    Google Scholar 

  • Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodefiency virus type 1 during transcription activation. EMBO J 12:3249–3259

    PubMed  CAS  Google Scholar 

  • Wall G, Varga-Weisz PD, Sandaltzopoulos R, Becker PB (1995) Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J 14:1727–1736

    PubMed  CAS  Google Scholar 

  • Wailrath LL, Quinn L, Granok H, Elgin SCR (1994) Architectural variations of inducible eukaryotic promoters: preset and remodeling chromatin structures. BioEssays 16:165–170

    Article  Google Scholar 

  • Walter PP, Owen-Hughes TA, Coté J, Workman JL (1995) Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol Cell Biol 15:6178–6187

    PubMed  CAS  Google Scholar 

  • Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1989) Dominant and specific repression of Xenopus occyte 5S RNA genes and satellite I DNA by histone H1. EMBO J 8:527–537

    PubMed  CAS  Google Scholar 

  • Wolffe AP (1994) Transcription: in tune with the histones. Cell 77:1–4

    Article  Google Scholar 

  • Zawel L, Reinberg D (1993) Initiation of transcription by RNA polymerase II: a multi-step process. Prog Nucleic Acid Res Mol Biol 44:67–108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandaltzopoulos, R., Becker, P.B. (1997). Antirepression, Potentiation and Activation of Promoters in Reconstituted Chromatin. In: Eckstein, F., Lilley, D.M.J. (eds) Mechanisms of Transcription. Nucleic Acids and Molecular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60691-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60691-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64509-9

  • Online ISBN: 978-3-642-60691-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics