Skip to main content

Modeling Large DNA Molecules: Long-Range Interactions and Regulation of Transcription

  • Chapter
  • 496 Accesses

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 11))

Abstract

Initiation of transcription in eukaryotes requires a multitude of transcription factors (TFS) that interact with the transcription complex (TC), with DNA, and among themselves. One important step in the assembly of the active transcription complex at the promoter is the interaction of transcription factors bound to distant enhancer sites with the proteins already present on the promoter. The simultaneous binding of a TF to a DNA binding site and to the TC on the promoter implies that the DNA between TF and promoter must have some higher order structure — in the simplest case, the DNA forms a loop (Fig. 1). The probability that the TF interacts with the TC will then depend on the probability that the two ends of a stretch of DNA meet within a given distance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison SA (1986) Brownian dynamics simulation of wormlike chains. Fluorescence depolarization and depolarized light scattering. Maeromolecules 19:118–124

    Article  CAS  Google Scholar 

  • Allison SA, McCammon J A (1984) Transport properties of rigid and flexible macro-molecules by Brownian dynamics simulation. Biopolymers 23:167–187

    Article  CAS  Google Scholar 

  • Allison SA, Austin R, Hogan M (1989) Bending and twisting dynamics of short linear DNAs — analysis of the triplet anisotropy decay of a 209-base pair fragment by Brownian dynamics simulation. J Chem Phys 90:3843–3854

    Article  CAS  Google Scholar 

  • Barkley MD, Zimm BH (1979) Theory of twisting and bending of chain macromolecules: analysis of the fluorescence depolarization of DNA. J Chem Phys 70:2991–3007

    Article  CAS  Google Scholar 

  • Bednar J, Furrer P, Stasiak A, Dubochet J, Egelman EH, Bates AD (1994) The twist, writhe and overall shape of superhelical DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. J Mol Biol 235:825–847

    Article  PubMed  CAS  Google Scholar 

  • Bednar J, Furrer P, Katritch V, Stasiak AZ, Dubochet J, Stasiak A (1995) Determination of DNA persistence length by cryo-electron microscopy. Separation of the static and dynamic contributions to the apparent persistence length of DNA. J Mol Biol 254:579–594

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield VA, Crothers DM, Tinoco JI (1974) Physical chemistry of nucleic acids. Harper & Row, New York

    Google Scholar 

  • Chirico G, Langowski J (1992) Calculating hydrodynamic properties of DNA through a second-order Brownian dynamics algorithm. Macromolecules 25:769–775

    Article  CAS  Google Scholar 

  • Chirico G, Langowski J (1994) Kinetics of DNA supercoiling studied by Brownian dynamics simulation. Biopolymers 34:415–433

    Article  CAS  Google Scholar 

  • Chirico G, Langowski J (1996) Brownian dynamics simulations of supercoiled DNA with bent sequences. Biophys J 71:955–971

    Article  PubMed  CAS  Google Scholar 

  • Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J-L, et al. (1996) DNA: an extensible molecule. Science 271:792–794

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Drak J, Kahn JD, Levene SD (1992) DNA bending, flexibility, and helical repeat by cyclization kinetics. Methods Enzymol 212:3–29

    Article  PubMed  CAS  Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352–1359

    Article  CAS  Google Scholar 

  • Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, New York

    Google Scholar 

  • Fujimoto BS, Schurr JM (1990) Dependence of the torsional rigidity of DNA on basecomposition. Nature 344:175–178

    Article  PubMed  CAS  Google Scholar 

  • Garcia de la Torre, J (1994) Hydrodynamics of segmentally flexible macromolecules -invited review. Eur Biophys J 23:307–322

    Google Scholar 

  • Gebe JA, Allison SA, Clendenning JB, Schurr JM (1995) Monte-Carlo simulations of supercoiling free-energies for unknotted and trefoil knotted DNAs. Biophys J 68:619–633

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ (1988) Flexibility of DNA. Annu Rev Biophys Biophys Chem 17:265–286

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ, Ramadevi VA (1990) Application of the method of phage T4 DNA ligase catalyzed ring-closure to the study of DNA structure. I. Computational analysis. J Mol Biol 212:351–362

    Article  PubMed  CAS  Google Scholar 

  • Horowitz DS, Wang JC (1984) Torsonal rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol 173:75–91

    Article  PubMed  CAS  Google Scholar 

  • Jacobson H, Stockmayer WH (1950) Intramolecular reaction in polycondensations. I. The theory of linear systems. J Chem Phys 18:1600–1606

    Article  CAS  Google Scholar 

  • Kim JL, Nikolov DB, Burley SK (1993) Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365:521–527

    Google Scholar 

  • Klenin KV, Vologodskii AV, Anshelevich VV, Klishko VY, Dykhne AM, Frank-Kamenetskii MD (1991) Computer simulation of DNA supercoiling. J Mol Biol 217:413–419

    Article  PubMed  CAS  Google Scholar 

  • Klenin K, Frank-Kamenetskii MD, Langowski J (1995) Modulation of intramolecular interactions in superhelical DNA by curved sequences. A Monte-Carlo simulation study. Biophys J 68:81–88

    Article  PubMed  CAS  Google Scholar 

  • Kratky O, Porod G (1949) Röntgenuntersuchung gelöster Fadenmoleküle. Ree Trav Chim 68:1106–1113

    Article  CAS  Google Scholar 

  • Kremer W, Klenin K, Diekmann S, Langowski J (1993) DNA curvature influences the internal motion of superhelical DNA. EMBO J 12:4407–4412

    PubMed  CAS  Google Scholar 

  • Langowski J, Olson WK, Pedersen SC, Tobias I, Westcott TP, Yang Y (1996) DNA supercoiling, localized bending and thermal fluctuations. Trends Biochem Sci 21:50

    PubMed  CAS  Google Scholar 

  • Laundon CH, Griffith JD (1988) Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52:545–549

    Article  PubMed  CAS  Google Scholar 

  • Levene SD, Crothers DM (1986) Ring closure probabilities for DNA fragments by Monte-Carlo simulation. J Mol Biol 189:61–72

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027

    Article  PubMed  CAS  Google Scholar 

  • Malhotra A, Gabb HA, Harvey SC (1993) Modeling large nucleic acids. Curr Opin Struct Biol 3:241–246

    Article  CAS  Google Scholar 

  • Manning GS (1970) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Olson WK (1996) Simulating DNA at low resolution. Curr Opin Struct Biol 6:242–256

    Article  PubMed  CAS  Google Scholar 

  • Rippe K, von Hippel PH, Langowski J (1995) Action at a distance: DNA-looping and initiation of transcription. Trends Biochem Sci 20:500–506

    Article  CAS  Google Scholar 

  • Rybenkov VV, Cozzarelli NR, Vologodskii AV (1993) Probability of DNA knotting and the effective diameter of the DNA double helix. Proc Natl Acad Sci USA 90:5307–5311

    Article  PubMed  CAS  Google Scholar 

  • Schlick T (1995) Modeling superhelical DNA: recent analytical and dynamic approaches. Curr Opin Struct Biol 5:245–262

    Article  PubMed  CAS  Google Scholar 

  • Schurr JM, Fujimoto BS, Wu P, Song L (1992) Fluorescence studies of nucleic acids: dynamics, rigidities and structures. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy vol 3. Plenum Press, New York, pp 137–229

    Chapter  Google Scholar 

  • Shaw SY, Wang JC (1993) Knotting of a DNA chain during ring closure. Science 260:533–536

    Article  PubMed  CAS  Google Scholar 

  • Shimada J, Yamakawa H (1984) Ring-closure probabilities of twisted wormlike chains. Application to DNA. Macromolecules 17:689–698

    Article  CAS  Google Scholar 

  • Shore D, Baldwin RL (1983) Energetics of DNA twisting. I. Relation between twist and cyclization probability. J Mol Biol 179:957–981

    Article  Google Scholar 

  • Shore D, Langowski J, Baldwin RL (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA 78:4833–4837

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    Article  PubMed  CAS  Google Scholar 

  • Song L, Schurr JM (1990) Dynamic bending rigidity of DNA. Biopolymers 30:229–237

    Article  PubMed  CAS  Google Scholar 

  • Sprous D, Harvey SC (1996) Action at a distance in supercoiled DNA: effects of sequence on slither, branching and intramolecular concentration. Biophys J 70:1893–1908

    Article  PubMed  CAS  Google Scholar 

  • Tan RK-Z, Harvey SC (1989) Molecular mechanics model of supercoiled DNA. J Mol Biol 205:573–591

    Article  PubMed  CAS  Google Scholar 

  • Taylor WH, Hagerman PJ (1990) Application of the method of phage T4 DNA ligase-catalyzed ring-closure to the study of DNA structure. I. NaCl-dependence of DNA flexibility and helical repeat. J Mol Biol 212:363–376

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN, Tan RK-Z, Harvey SC (1988) Static persistence length of DNA. In: Olson WK, Sarma MH, Sundaralingam M (eds) DNA bending and curvature. Structure and expression. Adenine Press, Albang, pp 243–254

    Google Scholar 

  • Vologodskii AV, Levene SD, Klenin KV, Frank-Kamenetskii MD, Cozzarelli NR (1992) Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol 227:1224–1243

    Article  PubMed  CAS  Google Scholar 

  • White JH (1989) An introduction to the geometry and topology of DNA structure. In: Waterman MS (ed) Mathematical methods for DNA sequences. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langowski, J. (1997). Modeling Large DNA Molecules: Long-Range Interactions and Regulation of Transcription. In: Eckstein, F., Lilley, D.M.J. (eds) Mechanisms of Transcription. Nucleic Acids and Molecular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60691-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60691-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64509-9

  • Online ISBN: 978-3-642-60691-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics