Skip to main content

A Short History and Introductory Background on the Coxsackieviruses of Group B

  • Chapter
The Coxsackie B Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 223))

Abstract

Almost 50 years ago, during a time of epidemics of paralytic poliomyelitis in the United States, a search was carried out by Gilbert Dalldorf and associates for “parapoliomyelitis viruses.” This project had been initiated by Dalldorf at the Westchester, NY County Hospital Laboratories and transferred to the State Laboratories following Dalldorf s appointment as Director of the Division of Laboratories and Research of the N.Y. State Department of Health in Albany, NY, (SEXTON 1967). This search for viruses similar to poliovirus bore fruit when viruses in stools of two. children exhibiting signs resembling poliomyelitis were isolated in newborn mice (Dalldorf and Sickles 1948). These isolates constituted a new group of enteroviruses that were named coxsackie viruses (originally two words, now combined into one following a convention adopted by the International Enterovirus Study Group in 1963) in recognition of the small village located on the Hudson River south of Albany in which the children lived. The coxsackieviruses were recognized as unique because they were not neutralized by antisera against the polioviruses, and polioviruses were not known to grow in mice. Parenthetically, it should be remembered that Enders, Weller, and Robbins had not yet published their discovery of growing polioviruses in cultures of human embryonic tissues (1949), for which they won the Nobel prize in 1954, and there was considerable interest in developing a more rapid and less expensive test for isolation of polio-viruses than subhuman primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beck MA, Kolbeck PC, Shi Q, Rohr LH, Morris, VC, Levander OA (1994) Increased virulence of a human enterovirus (coxsackievirus B3) in selenium-deficient mice. J Inf Dis 170:351 – 357

    Article  CAS  Google Scholar 

  • Beisel KW, Srinivasappa J, Prabhakar BS (1991) Molecular cloning of a heart antigen that cross-reacts with a neutralizing antibody to coxsackievirus B4. Eur Heart J 12 (Suppl D)60 – 64

    PubMed  CAS  Google Scholar 

  • Bendinelli M, Friedman H (eds) (1988) Coxsackieviruses: a general update. Plenum, New York

    Google Scholar 

  • Beressi A, Sunheimer RL, Huish S, Finck C, Pincus MR (1994) Acute severe rhabdomyolysis in an human immunodeficiency virus-seropositive patient associated with rising anti-coxsackie B viral titers. Ann Clin Lab Sci 24:278 – 281

    PubMed  CAS  Google Scholar 

  • Bowles NE, Dubowitz V, Sewry CA, Archard LC (1986a) Dermatomyositis, polymyositis, and coxsackie-B-virus infections. Lancet 1:1104 — 1107

    Google Scholar 

  • Bowles NE, Richardson PJ, Olsen EGJ, Archard LC (1986b) Detection of coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1:1120 – 1123

    Article  PubMed  CAS  Google Scholar 

  • Brown GC, Karunas RS (1972) Relationship of congenital anomalies and maternal infection with selected enteroviruses. Am J Epidemiol 95:207 – 217

    PubMed  CAS  Google Scholar 

  • Caggana M, Chan P, Ramsingh A. (1993) Identification of a single amino acid residue in the capsid protein VP1 of coxsackievirus B4 that determines the virulent phenotype. J Virol 67:4797–803

    PubMed  CAS  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288– 1292

    Article  PubMed  CAS  Google Scholar 

  • Chapman NM, Tu Z, Tracy S, Gauntt CJ (1994) An infectious cDNA copy of the genome of a non-cardiovirulent coxsackievirus B3 strain: its complete sequence analysis and comparison to the genomes of cardiovirulent coxsackieviruses. Arch Virol 135:115–130

    Article  PubMed  CAS  Google Scholar 

  • Crowell R, Finkelstein SD, Hsu K-HL, Landau BJ, Stahlhandske P, Whittier PS (1988) A murine model for coxsackievirus B3-induced acute myocardial necrosis for study of cellular receptors as determinants of viral tropism. In: Schultheiss HP (ed) New concepts in viral heart disease.Springer, Berlin, Heidelberg,New York, pp 79 – 92

    Google Scholar 

  • Crowell RL, Landau BJ (1983) Receptors in the initiation of picornavirus infections. In: Fraenkel-Conrat HWagner RR (eds) Comprehensive virology, Plenum, New York, 18:1–42

    Google Scholar 

  • Crowell RL, Siak JS (1978) Receptors for the group B coxsackieviruses: characterization and extraction from HeLa cell membranes. In: Pollard M (ed) Perspectives in virology. Raven, New York, pp 39 – 55

    Google Scholar 

  • Crowell RL, Tomko RP (1994) Receptors for picornaviruses. In: Wimmer E (ed) Cellular receptors for animal viruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Cunningham L, Bowles NE, Lane RJ, Dubowitz V, Archard LC (1990) Persistence of enteroviral RNA in chronic fatigue syndrome is associated with the abnoormal production of equal amounts of positive and negative strands of enteroviral RNA. J Gen Virol 71:1399 – 1402

    Article  PubMed  Google Scholar 

  • Cunningham MW, Antone SM, Gulizia JM, McManus B M, Fischetti VA, Gauntt CJ (1992) Cytotoxic and viral neutralizing antibodies crossreact with streptococcal M-protein, enteroviruses, and human cardiac myosin. Proc Natl Acad Sci USA 89:1320 – 1324

    Article  PubMed  CAS  Google Scholar 

  • D’Alessio DJ (1992) A case control study of group B coxsackievirus immunoglobulin M antibody prevalence and HLA-DR antigens in newly diagnosed cases of insulin dependent diabetes mellitus. Amer JEpid 135:1331 – 1338

    Google Scholar 

  • Dalldorf G, Sickles GM (1948) An unidentified, filterable agent isolated from the feces of children with paralysis. Science 108:61 – 62

    Article  PubMed  CAS  Google Scholar 

  • Enders JF, Weller TH, Robbins FC (1949) Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109:85 – 87

    Article  PubMed  CAS  Google Scholar 

  • Fohlman J, Friman G (1993) Is juvenile diabetes a viral disease? Ann Med 25:569 – 574

    PubMed  CAS  Google Scholar 

  • Fohlman J, Pauksen K, Morein B, Bjare U, Ilback NG, Friman G (1993) High yield production of an inactivated coxsackie B3 adjuvant vaccine with protective effect against experimental myocarditits. Scand JInfDis 88:103– 108

    CAS  Google Scholar 

  • Freistadt MS, Kaplan G, Racaniello VR (1990) Heterogeneous expression of poliovirus receptor-related proteins in human cells and tissues. Mol Cell Biol 10:5700 – 5706

    PubMed  CAS  Google Scholar 

  • Frisk G, Diderholm H (1992) Increased frequency of coxsackie B virus IgM in women with spontaneous abortion. J Infect 24:141 – 145

    Article  PubMed  CAS  Google Scholar 

  • Gauntt CJ (1988) The possible role of viral variants in pathogenesis. In: Bendinelli MFriedman H (eds) Coxsackieviruses: a general update.Plenum, New York, pp 159 – 179

    Google Scholar 

  • Gauntt CJ, Arizipe HM, Higdon AL, Wood HJ, Bowers DF, Rozek MM, Crawley R (1995) Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J Immunol 154:2983–2995

    PubMed  CAS  Google Scholar 

  • Gauntt CJ, Gudvangen RJ, Brans VW, Marlin AE (1985) Coxsackievirus group B antibodies in the ventricular fluid of infants with severe anatomic defects in the central nervous system. Pediatrics 76:64–68

    PubMed  CAS  Google Scholar 

  • Gifford R, Dalldorf G (1951) The morbid anatomy of experimental coxsackie virus infection. Am J Pathol 27:1047–1064

    PubMed  CAS  Google Scholar 

  • Gregor GR, Geller SA, Walker GF, Campomanes BA (1975) Coxsackie hepatitis in an adult, with ultrastructural demonstration of the virus. Mount Sinai J Med 42:575 - 580

    CAS  Google Scholar 

  • Haase A, Brahic M, Stowring L, Blum H (1984) Detection of viral nucleic acids by in situ hybridization. In: Maramorosh KKoprowski H (eds) Methods in Virology.Academic, New York, 7:189–226

    Google Scholar 

  • Heim A, Stille-Seigener M, Kandolf R, Kreuzer H, Figulla HR (1994) Enterovirus-induced myocarditis: hemodynamic deterioration with immunosuppressive therapy and successful application of interferon-alpha. Clin Cardiology 17:563–565

    Article  CAS  Google Scholar 

  • Heinz BA, Rueckert RR, Shepard DA, Dutko FJ, McKinlay MA, Fancher M, Rossmann MG, Badger J, Smith TJ (1989) Genetic and molecular analysis of spontaneous mutants of human rhinovirus 14 resistant to an antiviral compound. J Virol 63:2476 - 2485

    PubMed  CAS  Google Scholar 

  • Holland JJ, McLaren LC, Syverton JT (1959) The mammalian cell-virus relationship. IV: Infection of naturally insusceptible cells with enterovirus ribonucleic acid. J Exp Med 110:65 – 80

    Article  PubMed  CAS  Google Scholar 

  • Huber SA, Moraska A, Choate M (1992) T cells expressing the gamma delta T-cell receptor potentiate coxsackievirus B3-induced myocarditis. J Virol 66:6541 – 6546

    PubMed  CAS  Google Scholar 

  • Huber SA, Moraska A, Cunningham M (1994a) Alterations in major histocompatibility complex association of myocarditis induced by coxsackievirus B3 mutants selected with monoclonal antibodies to group A streptococci. Proc Natl Acad Sci USA 91:5543 – 5547

    Article  PubMed  CAS  Google Scholar 

  • Huber SA, Polgar J, Schultheiss P, Schwimmbeck P (1994b) Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. J Virol 68:195–206

    PubMed  CAS  Google Scholar 

  • Hyypia T, Kallajoki M, Maaronen M, Stanway G, Kandolf R, Auvinen P, Kalimo H (1993) Pathogenetic differences between coxsackie A and B virus infections in newborn mice. Virus Res 27:71 – 78

    Article  PubMed  CAS  Google Scholar 

  • IizukaN, Kuge S, Nomoto A. (1987) Complete nucleotide sequence of the genome of coxsackievirus Bl. Virology 156:64–73

    Article  PubMed  CAS  Google Scholar 

  • Iizuka N, Yonekawa H, Nomoto A. (1991) Nucleotide sequences important for translation initiation of enterovirus RNA. J Virol 65:4867–73

    PubMed  CAS  Google Scholar 

  • International Enterovirus Study Group (1963) Picornavirus group. Virology 19:114 – 116

    Article  Google Scholar 

  • Jongen PJ, Heessen FW, terLaak HJ, Galama JM, Gabreels FJ (1994) Coxsackie B1 virus-induced murine myositis: relationship of disease severity to virus dose and antiviral antibody response. Neuromuscular Disorders 4:17–23

    Article  PubMed  CAS  Google Scholar 

  • Kamei S, Hersch SM, Kurata T, Takei Y (1990) Coxsackie B antigen in the central nervous system of a patient with fatal acute encephalitis: immunohistochemical studies of formalin-fixed paraffin-embedded tissue. Acta Neuropath 80:216–221

    Article  PubMed  CAS  Google Scholar 

  • Kandolf R (1988) The impact of recombinant DNA technology on the study of enterovirus heart disease. In: Bendinelli MFriedman H (eds) Coxsackieviruses: a general update. Plenum, New York, pp 293–318

    Google Scholar 

  • Kandolf R, Hofschneider PH (1985) Molecular cloning of the genome of a cardiotropic coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci USA 82:4818 – 4822

    Article  PubMed  CAS  Google Scholar 

  • Kandolf R, Klingel K, Zell R, Canu A, Fortmuller U., Hohenadl C, Albrecht M, Reimann BY, Franz WM, Heim A, et al. (1993) Molecular mechanisms in the pathogenesis of enteroviral heart disease: acute and persistent infections. Clin Immunol Immunopathol 68:153–158

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Chatterjee NK, Nodwell MJ, Yoon JW (1994) Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain. J Med Virol 44:353 - 361

    Article  PubMed  CAS  Google Scholar 

  • Kaplan G, Freistadt MS, Racaniello V (1990) Neutralization of poliovirus by cell receptors expressed in insect cells. J Virol 64:4697 – 4702

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Lukaszyk A, Poloniecki J, Caforio AL, Davies MJ, Booth JC, McKenna WJ (1994) A prospective case-control study of antibodies to coxsackie B virus in idiopathic dilated cardiomyopathy. J Amer Coll Cardiol 23:593 – 598

    Article  CAS  Google Scholar 

  • Klingel K, Hohenadl C, Canu A, Albrecht M, Seemann M, Mall G, Kandolf R (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infectionn: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 89:314 – 318

    Article  PubMed  CAS  Google Scholar 

  • Koide H, Kitaura Y, Deguchi H, Ukimura A, Kawamura K, Hirai K (1992) Genomic detection of enteroviruses in the myocardium: studies on animal hearts with coxsackievirus B3 myocarditis and endocardial biopsies from patients with myocarditis and dilated cardiomyopathy. Jap Circul J 56:1081–1093

    Article  CAS  Google Scholar 

  • Koike S, Toya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A (1991) Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci 88:951 –955

    Article  PubMed  CAS  Google Scholar 

  • Kunin CM, Halmagyi NE (1961) The relative abundance of viral receptors: an explanation of the differential susceptibility of suckling and adult mice to coxsackie B1 infection. J Clin Invest 40: – 10551056

    Google Scholar 

  • Landau BJ, Whittier PS, Finkelstein SD, Alstein B, Grun JB, Schultz M, Crowell RL (1990) Induction of heterotypic virus resistance in adult inbred mice immunized with a variant of coxsackievirus B3. Microb. Pathogen 8:289 – 298

    Article  CAS  Google Scholar 

  • Lane JR, Neumann DA, Lafond-Walker A, Herskowitz A, Rose NR (1992) Interleukin 1 or tumor necrosis factor can promote coxsackie B3-induced myocarditis in resistant B10.A mice. J Exp Med 175:1123– 1129

    Article  PubMed  CAS  Google Scholar 

  • Lindberg AM, Crowell RL, Zell R, Kandolf R, Pettersson U. (1992) Mapping of the RD phenotype of the Nancy strain of coxsackievirus B3. Virus Res 24:187–96

    Article  PubMed  CAS  Google Scholar 

  • Mason JW, O’Connell JB, Herskowitz A, Rose NR, McManus BM, Billingham ME, Moon TE, and the Myocarditis Treatment Investigators (1995) A clinical trial of immunosuppressive therapy for myocarditis. N Eng J Med 333:269 – 275

    Article  CAS  Google Scholar 

  • Melnick JL (1990) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and the newer enteroviruses. In: Fields BN, Knipe DM, et al. (eds) Virology (2nd edn). Raven, New York, pp 549 – 606

    Google Scholar 

  • Melnick JL, Dalldorf G, Enders JF, Gelfand HM, Hammon W McD, Huebner RJ, Rosen L, Sabin AB, Syverton JT, Wenner HA (1962) Classification of human enteroviruses. Virology 16:501 –504

    Article  Google Scholar 

  • Muckelbauer JK, Kremer M, Minor I, Diana G, Dutko F, Groarke J, Pevear DC, Rossmann MG (1995) The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3:653 – 667

    Article  PubMed  CAS  Google Scholar 

  • Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW (1987) Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 139:3630 – 3636

    PubMed  CAS  Google Scholar 

  • Raab de Verdugo U, Selinka H-C, Huber M, Kramer B, Kellermann J, Hofschneider PH, Kandolf R (1995) Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol 69:6751 – 6757

    PubMed  Google Scholar 

  • Rabausch-Starz I, Schwaiger A, Grunewald K, Muller-Hermelink HK, Neu N (1994) Persistence of virus and viral genome in myocardium after coxsackievirus B3-induced murine myocarditis. Clin Exp Immunol 96:69 – 74

    Article  PubMed  CAS  Google Scholar 

  • Ramsingh A, Araki H, Bryant S, Hixson A (1992) Identification of candidate sequences that determine virulence in coxsackievirus B4. Virus Res 23:281 – 292

    Article  PubMed  CAS  Google Scholar 

  • Ramsingh A, Hixson A, Duceman B, Slack J. (1990) Evidence suggesting that virulence maps to the PI region of the coxsackievirus B4 genome. J Virol 64:3078–81

    PubMed  CAS  Google Scholar 

  • Ramsingh A, Slack J, Silkworth J, Hixson A (1989) Severity of disease induced by a pancreatropic coxsackie B4 virus correlates with the H-2Kq locus of the major histocompatibility complex. Virus Res 14:347–358

    Article  PubMed  CAS  Google Scholar 

  • Reagan K, Goldberg B, Crowell R (1984) Altered receptor specificity of coxsackievirus B3 after growth in rhabdosarcoma cells. J Virol 49:635 – 640

    PubMed  CAS  Google Scholar 

  • Ren R, Constantini FC, Gorgacz EJ, Lee JJ, Racaniello VR (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353 – 362

    Article  PubMed  CAS  Google Scholar 

  • Rose NR, Herskowitz A, Neumann DA (1993) Autoimmunity in myocarditis: models and mechanisms. Clin Immunol Immunopathol 68:95 – 99

    Article  PubMed  CAS  Google Scholar 

  • Rossmann MG, Palmenberg AC (1988) Conservation of the putative receptor attachment site in picornaviruses. Virology 164:373 – 382

    Article  PubMed  CAS  Google Scholar 

  • Rotbart HA (1992) DNA probes for viral diagnosis. Block TM Jungkind D Crowell RL Denison M Walsh LR. Innovations in antiviral development and detection of virus infections. Plenum, New York, pp 201–209

    Chapter  Google Scholar 

  • Rueckert RR (1990) Picornaviridae and their replication. In: Fields BNKnipe DMETAL Etal. (eds) Virology (2nd edn). Raven, New York, pp 507 – 548

    Google Scholar 

  • Sabin AB (1955) Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann NY Acad Sci 61:924 – 938

    Article  PubMed  CAS  Google Scholar 

  • Salk JE (1953) Principles of immunization as applied to poliomyelitis and influenza. Am J Pub Health 43:1384– 1398

    Article  PubMed  CAS  Google Scholar 

  • Schultz M, Crowell R (1983) Eclipse of coxsackievirus infectivity: the restrictive event for a non-fusing myogenic cell line. J Gen Virol 64:1725 – 1734

    Article  PubMed  CAS  Google Scholar 

  • Sexton AM (1967) A chronical of the division of laboratories and research, New York State Department of Health: the first fifty years 1914 - 1964. Stinehour, Lunenburg, VT

    Google Scholar 

  • Tilles JG (1994) Efficacy of a polyvalent inactivated-virus vaccine in protecting mice from infection with clinical strains of group B coxsackieviruses. Scand J Inf Dis 26:739 – 747

    Article  Google Scholar 

  • Tilles JG (1995) Pathogenesis of virus-induced diabetes in mice. J Inf Dis 171:1131 – 1138

    Article  Google Scholar 

  • Tracy S, Chapman NM, Tu, Z (1992) Coxsackievirus B3 from an infectious cDNA copy of the genome is cardiovirulent in mice. Arch Virol 122:399 – 409

    Article  PubMed  CAS  Google Scholar 

  • Tu Z, Chapman NM, Hufiiagel G, Tracy S, Romero JR, Barry WH, Zhao L, Currey K, Shapiro B (1995) The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5’ nontranslated region. J Virol 69:4607 – 4618

    PubMed  CAS  Google Scholar 

  • Ursing B (1973) Acute pancreatitis in coxsackie B infection. Br Med J 3:524 – 525

    Article  PubMed  CAS  Google Scholar 

  • Webb SR, Madge GE (1980) The role of host genetics in the pathogenesis of coxsackievirus infection in the pancreas of adult mice. J Inf Dis 141:47 – 54

    Article  CAS  Google Scholar 

  • Wolfgram LJ, Beisel KW, Herskowitz A, Rose NR (1986) Variations in the susceptibility to coxsackievirus B3-induced myocarditis among different strains of mice. J Immunol 136:1846 – 1852

    PubMed  CAS  Google Scholar 

  • Yoon JW, Austin M, Onodera T, Notkins AL (1979) Virus-induced diabetes mellitus. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173 – 1179

    CAS  Google Scholar 

  • Zhang G, Wilsden G, Knowles NJ, McCauley JW. (1993) Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus. J Gen Virol 74:845–53

    Article  PubMed  CAS  Google Scholar 

  • Zibert A, Selinka HC, Elroy-Stein O, Wimmer E (1992) The soluble form of two N-terminal domains of the poliovirus receptor is sufficient for blocking viral infection. Virus Res 25:51–61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crowell, R.L., Landau, B.J. (1997). A Short History and Introductory Background on the Coxsackieviruses of Group B. In: Tracy, S., Chapman, N.M., Mahy, B.W.J. (eds) The Coxsackie B Viruses. Current Topics in Microbiology and Immunology, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60687-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60687-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64507-5

  • Online ISBN: 978-3-642-60687-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics