Neurodegenerative Alzheimer-like Pathology in PDAPP 717V → F Transgenic Mice

Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)


Predominant pathological hallmarks of Alzheimer’s (AD) include the region-specific deposition of β amyloid (Aβ) plaques, vascular amyloidosis, and a number of distinct neurodegenerative changes. These involve the formation of dystrophic neurites and neuritic plaques, cytoskeletal alterations, and synaptic and neuronal loss. Astrocytosis and microgliosis are also evident in affected brain regions. Transgenic (tg) mice overexpressing a mutant form of the β-amyloid precursor protein (APP 717 V→ F) develop several of these pathologies in an age- and region-dependent manner similar to AD. Aβ plaques in the transgenic mouse share many of the tinctorial and immunohistochemical properties of AD plaques, including the relative distribution of AβX-40 and AβX-42 isoforms and the presence of other plaque-associated proteins. Initial findings using immunoassays specific to unique forms of APP and Aβ suggest that APP levels do not dramatically change with increasing age in the mouse brains, and that region-specific variations in APP metabolism, local factors or deficits in distinct populations of neurons account for the deposition of brain Aβ. The PDAPP mouse is a relevant and efficient model system to identify mechanistic properties of the disease process and offers novel opportunities to test potential therapeutics.


Down Syndrome Senile Plaque Neuritic Plaque Dystrophic Neurites Neurobiol Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham CR, Selkoe DJ, Potter H (1988) Immunohistochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin inhibitor in the brain amyloid deposits of Alzheimer’s disease. Cell 52: 487 – 501PubMedCrossRefGoogle Scholar
  2. Akiyama H, McGeer PL (1990) Brain microglia constitutively express β-2 integrins. J Neuroimmunol 30: 81 – 93PubMedCrossRefGoogle Scholar
  3. Arai H, Lee VM, Otvos LJr, Greenberg BD, Lowery DE, Sharma SK, Schmidt ML, Trojanowski JQ (1990) Defined neurofilament, tau, and beta-amyloid precursor protein epitopes distinguish Alzheimer from non-Alzheimer plaques. Proc Natl Acad Sci USA 87: 2249–2253PubMedCrossRefGoogle Scholar
  4. Asian PS, Davis KL (1994) Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psych 151: 1105 – 1113Google Scholar
  5. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16: 271 – 278PubMedCrossRefGoogle Scholar
  6. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeletal changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropath 87: 554 – 567PubMedCrossRefGoogle Scholar
  7. Cairns NJ, Chadwick A, Luthert PJ, Lantos PL (1992) Astrocytosis, beta A4-protein and paired helical filament formation in Alzheimer’s disease. J Neurol Sci 112: 68 – 75PubMedCrossRefGoogle Scholar
  8. Caporasco L, Gandy SE, Buxbaum JD, Ramabhadran TV, Greengard P (1992) Protein phosphorylation regulates secretion of Alzheimer’s β/A4 amyloid precursor protein. Proc Natl Acad Sci USA 89, 3055 – 3059CrossRefGoogle Scholar
  9. Cataldo AM, Hamilton DJ, Nixon RA (1994) Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Res 640: 68 – 80PubMedCrossRefGoogle Scholar
  10. Cotman CW, Cummings BJ, Whitson JS (1991) The role of misdirected plasticity in plaque biogenesis and Alzheimer’s disease pathology. In: Growth factors and Alzheimer’s disease. Hefti F, Brachet P, Will B, Christen Y (eds) Alzheimer’s disease and related conditions. Springer-Verlag, Heidelberg, pp. 222 – 233Google Scholar
  11. Cummings BJ, Su JH, Cotman CW, White R, Russell MJ (1993) Beta-amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer’s disease. Neurobiol Aging 14: 547 – 560PubMedCrossRefGoogle Scholar
  12. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248: 1122 – 1128PubMedCrossRefGoogle Scholar
  13. Fredrickson RC (1992) Astroglia in Alzheimer’s disease. Neurobiol Aging 13: 239 – 253CrossRefGoogle Scholar
  14. Fukumoto H, Asami-Odaka A, Suzuki N, Shimada H, Ihara Y, Iwatsubo T (1996) Amyloid β protein in normal aging has the same characteristics as that in Alzheimer’s disease. Am J Pathol 148: 259 – 265PubMedGoogle Scholar
  15. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie R, Guido T, Hagopian S, Johnson-Wood K, Khan I, Lee M, Leibowitz P, Liebergurb I, Little S, Masliah E, McConlogue L, Montoya Azvala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Development of neuropathology similar to Alzheimer’s disease in transgenic mice overexpressing the 717V→F β-amyloid precursor protein. Nature 373: 523 – 527PubMedCrossRefGoogle Scholar
  16. Goedert M, Jakes R, Crowther RA, Six J, Lubke U, Vandermeeren M, Cras P, Trojanowski JQ, Lee VM (1993) The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer’s disease recapitulates phosphorylation during development. Proc Natl Acad Sci USA 90: 5066 – 5070PubMedCrossRefGoogle Scholar
  17. Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljarvi L, Koivisto E, Riekkinen PJ (1995) Loss of synaptin-like immunoreactivitiy in the hippocampal formation as an early phenomenon in Alzheimer’s disease. Neuroscience 64: 375 – 384PubMedCrossRefGoogle Scholar
  18. Higgins LS, Holtzman DM, Rabin J, Mobley WC, Cordell B (1994) Transgenic mouse brain histophathology resembles early Alzheimer’s disease. Ann Neurol 35: 598 – 607PubMedCrossRefGoogle Scholar
  19. Honer WG, Dickson DW, Gleeson J, Davies P (1992) Regional synaptic pathology in Alzheimer’s disease. Neurobiol Aging 13: 375 – 382PubMedCrossRefGoogle Scholar
  20. Hyman BT (1992) Down Syndrome and Alzheimer’s disease: Progress in clinical and biological research. Prog Clin Biol Res 379: 123 – 142PubMedGoogle Scholar
  21. Hyman BT, Van Hoesen BW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: An anatomical study. Neurology 40: 1721 – 1730PubMedGoogle Scholar
  22. Iwatsubo T, Mann DMA, Odaka A, Suzuki N, Ihara Y (1995) Amyloid β protein (Aβ) deposition: Aβ 42 (43) precedes Aβ40 in Down Syndrome. Ann Neurol 37: 294 – 299PubMedCrossRefGoogle Scholar
  23. Joachim C, Games D, Morris J, Ward P, Frenkel D, Selkoe D (1991) Antibodies to non-beta regions of the beta-amyloid precursor protein defect a subset of senile plaques. Am J Pathol 138: 373 – 384PubMedGoogle Scholar
  24. Lemere CA, Blusztajn Y, Yamaguchi T, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid β-peptides and Apo E in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol Disease 3: 16 – 32CrossRefGoogle Scholar
  25. Mann DA (1988) The pathological association between Down Syndrome and Alzheimer’s disease. Mech Aging Develop 43: 99 – 136CrossRefGoogle Scholar
  26. Mann DMA (1989) Cerebral amyloidosis, aging and Alzheimer’s disease: A contribution of studies from Down’s Syndrome. Neurobiol Aging 10: 397 – 399PubMedCrossRefGoogle Scholar
  27. Mann DMA (1994) Alzheimer’s disease: Progress in pathological and aetiological aspects. Res Gerontol 4: 43 – 60CrossRefGoogle Scholar
  28. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglial in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79: 195 – 200PubMedCrossRefGoogle Scholar
  29. Masliah E, Miller A, Terry RD (1993a) The synaptic organization of the neocortex in Alzheimers disease. Medical Hypothesis 41: 334 – 340CrossRefGoogle Scholar
  30. Masliah E, Mallory M, Deerink T, DeTeresa R, Lamont S, Miller A, Terry R, Carragher B, Ellisman M (1993b) Re-evaluation of the structural organization of neuritic plaques in Alzheimer’s disease. J Neuropathol Exp Neurol 52: 619 – 632CrossRefGoogle Scholar
  31. Masliah E, Mallory M, Hansen L, Alford M, DeTeresa R, Terry R (1993c) An antibody against phos-phorylated neurofilaments identifies a subset of damaged association axons in Alzheimer’s disease. Am J Pathol 142: 871 – 882PubMedGoogle Scholar
  32. Murrell J, FarlowM, Ghetti B, Benson M (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254: 97 – 99PubMedCrossRefGoogle Scholar
  33. Oltersdorf T, Fritz LC, Schenk DB, Lieberburg I, Johnson-Wood K, Beattie EC, Ward PJ, Blacher RW, Dovey HF, Sinha S (1989) The secreted form of the Alzheimer’s amyloid precursor protein with the Kunitz domain is Protease Nexin II. Nature 341: 144 – 147PubMedCrossRefGoogle Scholar
  34. Perlmutter LS, Scott SA, Chui HC (1991) The role of microglia in the cortical neuropathology of Alzheimer disease. Bull Clin Neurosci 56: 120 – 130Google Scholar
  35. Pike CJ, Cummings BJ, Cotman CW (1995) Early association of reactive astrocytes with senile plaques in Alzheimer’s disease. Exper Neurol 132: 172 – 179CrossRefGoogle Scholar
  36. Price DL, Martin LJ, Sisodia SS, Wagner MV, Koo EH, Walker LC, Koliatos VE, Cork LC (1991) Aged non-human primates: An animal model of age-associated neurodegenerative disease. Brain Pathol 1: 287 – 296PubMedCrossRefGoogle Scholar
  37. Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid β protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270: 28257 – 28267PubMedCrossRefGoogle Scholar
  38. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune-system-associated antigens by cells of the human central nervous system: Realationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9: 339 – 349PubMedCrossRefGoogle Scholar
  39. Selkoe D (1991) The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498CrossRefGoogle Scholar
  40. Selkoe DJ, Bell DS, PodlinskyMB, Price DL, Cork LC (1987) Conservation of brain amyloid in aged mammals and humans with Alzheimer’s disease. Science 235: 873 – 877Google Scholar
  41. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert F, Selkow D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359: 325 – 327PubMedCrossRefGoogle Scholar
  42. Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL, Bryant K, Fritz LD, Galasko D, Thal LJ, Lieberburg I, Schenk DB (1993) Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. Nature 361: 260 – 263PubMedCrossRefGoogle Scholar
  43. Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparin sulfate proteoglycans in the neuritic plaques and congophilic angiopathy of Alzheimer’s disease. Am J Pathol 133: 456 – 463PubMedGoogle Scholar
  44. Su JH, Cummings BJ, Cotman CW (1994) Early phosphorylation of tau in Alzheimer’s disease occurs at Ser-202 and is preferentially located within neurites. Neuro Report 5: 2358 – 2362Google Scholar
  45. Takahashi H, Kurashima C, Utuyama M, Hirokawa K (1990) Immunohistological study of senile brains using a monoclonal antibody recognizing beta amyloid precursor protein, significance of granular deposits in relation with senile plaques. Acta Neuropathol 80: 260 – 265PubMedCrossRefGoogle Scholar
  46. Terry RD, Masliah E, Hansen LA (1994) Structural basis of the cognitive alterations in Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL (eds). Alzheimer’s disease. Raven Press, New York pp. 179 – 196Google Scholar
  47. Van Eldik LJ, Griffin WS (1994) SlOO beta expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim Biophys Acta 1223: 398 – 403CrossRefGoogle Scholar
  48. Van Hoesen GW, Hyman BT (1990) Hippocampal formation: Anatomy and the patterns of pathology in Alzheimer’s disease. Prog Brain Res 83: 445 – 457PubMedCrossRefGoogle Scholar
  49. Vickers JC, Riederer BM, Marugg RA, Buee-Scherrer V, Buee L, Delacourte A, Morrison JH (1994) Alterations in neurofilament protein immunoreactivity in human hippocampal neurons related to normal aging and Alzheimer’s disease. Neuroscience 62: 1 – 13PubMedCrossRefGoogle Scholar
  50. Wisniewski HM, Bancher C, Barcikowska M, Wen GY, Currie J (1989) Spectrum of morphological appearance of amyloid deposits in Alzheimer’s disease. Acta Neurophathol 78: 337 – 347CrossRefGoogle Scholar
  51. Yamaguchi H, Harai S, Morimatsu M, Shoji M, Ihara Y (1988) A variety of cerebral amyloid deposits in the brains of Alzheimer-type dementia demonstrated by β protein immunostaining. Acta Neuropathol 541 – 549Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Athena NeurosciencesSouth San FranciscoUSA

Personalised recommendations