Skip to main content

Reduced Neuronal Activity is One of the Major Hallmarks of Alzheimer’s Disease

  • Conference paper
Connections, Cognition and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Abstract

Alzheimer’s disease (AD) is histopathologically characterized by the presence of neuritic plaques (NPs) and cytoskeletal changes (Fig. 1) that are visible as pretangles stained by Alz-50, neurofibrillary tangles (NFT) in the cell bodies of affected neurons, and neuropil threads (Braak et al. 1986) or dystrophic neurites (Kowall and Kosik 1987). Dystrophic neurites are defined as short, thickened, curly, coiled or sometimes hooked fibres observable as the neuritic component of NPs or present in the neuropil outside these structures. Neuropil threads is an alternative term for dystrophic neurites that are not the neuritic component of NPs. To a lesser degree, NPs and cytoskeletal changes can also be observed in aged, nondemented control subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama H, Tago H, Itagaki S, McGeer PL (1990) Occurrence of diffuse amyloid deposits in the presubicular parvopyramidal layers in Alzheimer’s disease. Acta Neuropath (Berl) 79: 537 – 544

    CAS  Google Scholar 

  • Allen SJ, Dawbarn D, Wilcock GK (1988) Morphometric immunochemical analysis of neurons in the nucleus basalis of Meynert in Alzheimer’s disease. Brain Res 454: 275 – 281

    PubMed  CAS  Google Scholar 

  • Andrä K, Abramowski D, Duke M, Probst A, Wiederhold K-H, Bürki K, Goedert M, Sommer B, Staufenbiel M (1996) Expression of APP in transgenic mice: a comparison of neuron-specific promotors. Neurobiol Aging 17: 183 – 190

    PubMed  Google Scholar 

  • Armstrong RA, Myers D, Smith CUM (1992) Alzheimer’s disease: Are cellular neurofibrillary tangles linked to beta/A4 formation at the projection sites? Neurosci Res Comm 11: 171 – 177

    Google Scholar 

  • Armstrong RA, Myers D, Smith CUM (1993) The spatial patterns of plaques and tangles in Alzheimer’s disease do not support the’cascade hypothesis.’ Dementia 4: 16 – 20

    PubMed  CAS  Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroana-tomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’ disease. Cereb Cortex 1: 103 – 106

    PubMed  CAS  Google Scholar 

  • Arriagada PV, Growdon JH, Hedly-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631 – 639

    PubMed  CAS  Google Scholar 

  • Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Grundke-Iqbal I, Iqbal K, Wisnieswski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477: 90 – 99

    PubMed  CAS  Google Scholar 

  • Barcikowska M, Wisniewski HM, Bancher C, Grundke-Iqbal I (1989) About the presence of paired helical filaments in dystrophic neurites participating in the plaque formation. Acta Neuropath (Berl) 78: 225 – 231

    CAS  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32: 164 – 168

    PubMed  CAS  Google Scholar 

  • Bouras C, Hof PR, Giannakopoulos P, Michel J-P, Morrison JH (1994) Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 4: 138 – 150

    PubMed  CAS  Google Scholar 

  • Bowen DM, Smith CB, White P, Flack RHA, Carrasco LH, Gedye JL, Davidson AN (1977) Chemical pathology of the organic dementias. II. Quantiative estimation of cellular changes in post-mortem brains. Brain 100: 427 – 453

    PubMed  CAS  Google Scholar 

  • Braak E, Braak H, Mandelkow E-M (1994) A sequence of cytoskeletal changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol (Beri) 8733: 554 - 567

    Google Scholar 

  • Braak H, Braak E (1990) Alzheimer’s disease: Striatal amyloid deposits and neurofibrillary changes. J Neuropath Exp Neurol 49: 15 – 224

    Google Scholar 

  • Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropath (Berl) 82: 239 – 259

    CAS  Google Scholar 

  • Braak H, Braak E, Grundke-Iqbal I (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci Lett 65: 351 – 355

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Bohl J, Lang W (1989a) Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 93: 277 – 287

    CAS  Google Scholar 

  • Braak H, Braak E, Ohm T, Bohl J (1989b) Alzheimer’s disease: mismatch between amyloid plaques and neuritic plaques. Neurosci Lett 103: 24 – 28

    CAS  Google Scholar 

  • Chan-Palay V, Asan E (1989) Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol 287: 373 – 392

    PubMed  CAS  Google Scholar 

  • Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L (1988) Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38: 1682 – 1687

    PubMed  CAS  Google Scholar 

  • Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, Beyreuther K, Masters CL (1988) A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: Prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 38: 1688 – 1693

    PubMed  CAS  Google Scholar 

  • De Lacalle S, Iraizoz I, Ma Conzalo L (1992) Differential changes in cell size and number in topographic subdivisions of human basal nucleus in normal aging. Neuroscience 43: 445 – 456

    Google Scholar 

  • Delaere P, Duyckaerts C, Masters CL, Beyreuther K (1990) Large amounts of neocortical beta/A4 deposits without neuritic plaques nor tangles in psychometrically assessed, non-demented person. Neurosci Lett 116: 87 – 93

    PubMed  CAS  Google Scholar 

  • Delaere P, Yi HE, Fayet G, Duyckaerts C, Hauw J-J (1993) Beta/A4 deposits are constant in the brain of the oldest old: an immunohistochemical study of 20 French centenarians. Neurobiol Aging 14: 191 – 194

    PubMed  CAS  Google Scholar 

  • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen S-HC (1988) Alzheimer’s disease: A double-labelling immunohistochemical study of senile plaques. Am J Path 132: 86 – 101

    PubMed  CAS  Google Scholar 

  • Doebler JA, Markesberry WR, Anthony A, Davies P, Scheff SW, Rhoads RE (1988) Neuronal RNA in relation to Alz-50 immunoreactivity in Alzheimer’s disease. Ann Neurol 23: 20 – 24

    PubMed  CAS  Google Scholar 

  • Duyckaerts C, Hauw J-J, Bastenaire F, Piette F, Poulain C, Rainsard V, Javoy-Agid F, Berthaux P (1986) Laminar distribution of neocortical senile plaques in senile dementia of the Alzheimer type. Acta Neuropathol (Berl) 70: 249 – 256

    CAS  Google Scholar 

  • Duyckaerts C, Delaere P, Poulain V, Brion J-P, Hauw J-J (1988) Does amyloid precede paired helical filaments in the senile plaque? A study of 125 cases with graded intellectual status in aging and Alzheimer disease. Neurosci Lett 91: 354 – 359

    PubMed  CAS  Google Scholar 

  • Emre M, Geula C, Ransil BJ, Mesulam M-M (1992) The acute neurotoxicity and effects on cholinergic axons of interacerebrally injected β amyloid in the rat brain. Neurobiol Aging 13: 553 – 560

    PubMed  CAS  Google Scholar 

  • Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di Chiro G (1984) Cortical abnormalities in Alzheimer’s disease. Ann Neurol 16: 649 – 654

    PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Liebowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Powe M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vital J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373: 523 – 527

    PubMed  CAS  Google Scholar 

  • German DC, Manaye KF, White III CL, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DMA (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32: 667 - 676

    PubMed  CAS  Google Scholar 

  • Gertz HJ, Schoknecht G, Krüger H, Cervos-Navarro J (1989) Stability of cell size and nucleolar size in tangle-bearing neurons of hippocampus in Alzheimer’s disease. Brain Res 487: 373 – 375

    PubMed  CAS  Google Scholar 

  • Goudsmit E, Hofman MA, Fliers E, Swaab DF (1990) The supraoptic and paraventricular nuclei of the human hypohalamus in relation to sex, age and Alzheimer’s disease. Neurobiol Aging 11: 529 – 536

    PubMed  CAS  Google Scholar 

  • Greenberg BD, Savage MJ, Howland DS, Ali SM, Siedlak SL, Perry G, Siman R, Scott RW (1996) APP transgenesis: approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiol Aging 17: 153 - 171

    PubMed  CAS  Google Scholar 

  • Guillemette JG, Wong L, Crapper McLachlan DR, Lewis PN (1986) Characterization of messenger RNA from the cerebral cortex of control and Alzheimer-afflicted brain. J Neurochem 47: 987 – 997

    PubMed  CAS  Google Scholar 

  • Haxby JV, Grady CL, Koss E, Horwitz B, Schapiro M, Friedland RP, Rapoport SI (1988) heterogeneous anterior-posterior metabolic patterns in dementia of the Alzheimer type. Neurology 38: 1853–1863

    Google Scholar 

  • Hoogendijk WJG, Pool CW, Troost D, Van Zwieten EJ, Swaab DF (1995) Image-analyzer-assisted morphometry of the locus coeruleus in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Brain 118: 131 – 143

    PubMed  Google Scholar 

  • Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235: 143 – 148

    PubMed  CAS  Google Scholar 

  • Hozumi S, Okawa M, Mishima K, Hishikawa Y, Hori H, Takahashi K (1990) Phototherapy for elderly patients with dementia and sleep-wake rhythm disorders - a comparison between morning and evening light exposure. Japan J Psych Neurol 44: 813 – 814

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472 – 481

    PubMed  CAS  Google Scholar 

  • Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135: 309 – 319

    PubMed  CAS  Google Scholar 

  • Jucker M, Walker LC, Martin LJ, Kitt CA, Kleinman HK, Ingram DK, Price DL (1992) Age-associated inclusions in normal and transgenic mouse brain. Science 255: 1443 – 1445

    PubMed  CAS  Google Scholar 

  • Kalus P, Braak H, Braak ER, Bohl J (1989) The presubicular region in Alzheimer’s disease: topography of amyloid deposits and neurofibrillary changes. Brain Res 494: 198 – 203

    PubMed  CAS  Google Scholar 

  • Kammesheidt A, Boyce FM, Spanoyannis AF, Cummings BJ, Ortegon M, Cotman C, Vaught JL, Neve RL (1992) Deposition of beta/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxy terminal fragment of the Alzheimer amyloid precursor in the brain. Proc Natl Acad Sci USA 89: 10857 – 10861

    PubMed  CAS  Google Scholar 

  • Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733 – 736

    PubMed  CAS  Google Scholar 

  • Katzman R, Terry RD, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1987) Clinical, pathological and neurochemical changes in dementia, a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23: 138 – 144

    Google Scholar 

  • Kawabata S, Higgins GA, Gordon JW (1991) Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354: 476 – 478

    PubMed  CAS  Google Scholar 

  • Kowall NW, Kosik KS (1987) Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann Neurol 22: 639 – 643

    PubMed  CAS  Google Scholar 

  • Kowall N, McKee AC, Yankner BA, Beal MF (1992) In vivo neurotoxicity of beta-amyloid [β(l-40)] and β(25–35) fragment. Neurobiol Aging 13: 537 – 542

    PubMed  CAS  Google Scholar 

  • Kremer HPH (1992) The hypothalamic lateral tuberal nucleus: normal anatomy and changes in neurological diseases. In: Swaab DF, Hofman MA, Mirmiran M, Ravid R, van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in Brain Research, Vol 93. Elsevier, Amsterdam, pp 249 – 263

    Google Scholar 

  • Kremer HPH, Swaab DF, Bots GThAM, Fisser B, Ravid R, Roos RAC (1991) The hypothalamic lateral tuberal nucleus in Alzheimer’s disease. Ann Neurol 29: 279 – 284

    PubMed  CAS  Google Scholar 

  • Kumar A, Newberg A, Alavi A, Berlin J, Smith R, Reivich M (1993) Regional cerebral glucose metabolism in late-life Alzheimer disease: a preliminary positron emission. Proc Natl Acad Sci USA 90: 7019 – 7023

    PubMed  CAS  Google Scholar 

  • Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and forms of normal Tau. Science 251: 675 – 678

    PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KAB, Weber E, Bird TD, Schellenberg GD (1995) A fimilial Alzheimer’s disease locus on chromosome 1. Science 269: 970 – 973

    PubMed  CAS  Google Scholar 

  • Lowes-Hummel P, Gertz H-J, Ferszt R, Cervos-Navarro J (1989) The basal nucleus of Meynert revised: the nerve cell number decreases with age. Arch Gerontol Geriatrics 8: 21 – 27

    CAS  Google Scholar 

  • Lucassen PJ, Salehi A, Pool CW, Gonatas NK, Swaab DF (1994) Activation of vasopressin neurons in aging and Alzheimer’s disease. J Neuroendocr 6: 673 – 679

    CAS  Google Scholar 

  • Lucassen PJ, Hofman MA, Swaab DF (1995) Increased light intensity prevents the age related loss of vasopressin-expressing neurons in the rat suprachiasmatic nucleus. Brain Res 693: 261 – 266

    PubMed  CAS  Google Scholar 

  • Malherbe P, Richards JG, Martin JR, Bluethmann H, Maggio J, Huber G (1996) Lack of β-amyloidosis in transgenic mice expressing low levels of familial Alzheimer’s disease missense mutations. Neurobiol Aging 17: 205 – 214

    PubMed  CAS  Google Scholar 

  • Mann DMA, Jones D (1990) Deposition of amyloid (A4) protein within the brains of persons with dementing disorders other than Alzheimer’s disease and Down’s syndrome. Neurosci Lett 109: 68 – 75

    PubMed  CAS  Google Scholar 

  • Mann DMA, Neary D, Yates PO, Lincoln J, Snowden JS, Stanworth P (1981) Alterations in protein synthetic capability of nerve cells in Alzheimer’s disease. J Neurosurg Psychiat 44: 97 – 102

    CAS  Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1984) Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to ageing and to the accumulation of lipofuscin pigment. Mechan Ageing Dev25: 189 – 204

    Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1985) Some morphometric observations in the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer type and Down’s syndrome in middle age. J Neurol Sci 69: 139 – 159

    PubMed  CAS  Google Scholar 

  • Manning CA, Ragozzino ME, Gold PE (1993) Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer’s type. Neurobiol Aging 14: 523 – 528

    PubMed  CAS  Google Scholar 

  • Mantione JR, Kleppner SR, Miyazono M, Wertkin AM, Lee VM-Y, Trojanowski JQ (1995) Human neurons that constitutively secrete Aβ do not induce Alzheimer’s disease pathology following transplantation and long-term survival in the rodent brain. Brain Res 671: 333 – 337

    PubMed  CAS  Google Scholar 

  • Marcus DL, de Leon MJ, Goldman J, Logan J, Christman DR, Wolf AP, Fowler JS, Hunter K, Tsai J, Pearson J, Freedman ML (1989) Altered glucose metabolism in microvessels from patients with Alzheimer’s disease. Ann Neurol 26: 91 – 94

    PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid core plaque protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245 – 4249

    PubMed  CAS  Google Scholar 

  • McKee AC, Kosik KS, Nowall NW (1991) Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 30: 156 – 165

    PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Bertoni-Freddari C, Iwangoff P (1994) Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer’s disease. Gerontology 40: 246 – 252

    PubMed  CAS  Google Scholar 

  • Meneilly GS, Hill A (1993) Alterations in glucose metabolism in patients with Alzheimer’s disease. J Am Geriatr Soc 41: 710 – 714

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson MJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214: 170 – 197

    PubMed  CAS  Google Scholar 

  • Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1994) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5: 36 – 41

    PubMed  CAS  Google Scholar 

  • Mishima K, Okawa M, Hishikawa Y, Hozumi S, Hori H, Takahashi K (1994) Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatr Scand 89: 1 – 7

    PubMed  CAS  Google Scholar 

  • Morrison JH, Foote SL, O’Conner D, Bloom FE (1982) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-beta-hydroxylase immunohistochemistry. Brain Res Bull 9: 309 – 319

    PubMed  CAS  Google Scholar 

  • Mukaetova-Ladinska EB, Harrington CR, Roth M, Wischik CM (1993) Biochemical and anatomical redistribution of tau protein in Alzheimer’s disease. Am J Pathol 143: 565 – 578

    PubMed  CAS  Google Scholar 

  • Mullan M, Houlden H, Windelspect M, Fidani L, Lombardi C, Diaz P, Rossor M, Crook R, Hardy J, Duff K, Crawford F (1992) A locus for familial early onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-anti-chymotrypsin gene. Nature Genet 2: 340 – 342

    PubMed  CAS  Google Scholar 

  • Nakamura S, Takemura M, Ohnishi K, Suenaga T, Nishimura M, Akiguchi I, Kimura J, Kimura T (1993) Loss of large neurons and occurrence of neurofibrillary tangles in the tuberomammillary nucleus of patients with Alzheimer’s disease. Neurosci Lett 151: 196–199

    PubMed  CAS  Google Scholar 

  • Ogomori K, Kitamoto T, Tateishi J, Sato Y, Suetsugu M, Abe M (1990) Beta-protein amyloid is widely distributed in the central nervous system of patients with Alzheimer’s disease. Am J Pathol 134: 243 – 251

    Google Scholar 

  • Okawa M, Mishima K, Hishikawa Y, Hozumi S, Hori H, Takahashi K (1991) Circadian rhythm disorders in sleep-waking and body temperature in elderly patients with dementia and their treatment. Sleep 14: 478 – 485

    PubMed  CAS  Google Scholar 

  • Pearson RCA, Gatter KC, Powell TPS (1983) Retrograde cell degeneration in the basal nucleus in monkey and man. Brain Res 261: 321 – 326

    PubMed  CAS  Google Scholar 

  • Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc Natl Acad Sci USA 82: 4531 – 4534

    PubMed  CAS  Google Scholar 

  • Peppard RF, Martin WRW, Carr GD, Grochowski E, Schulzer M, Guttman M, McGeer PL, Phillips AG, Tsui JKC, Calne DB (1992) Cerebral glucose metabolism in Parkinson’s disease with and without dementia. Arch Neurol 49: 1262 – 1268

    PubMed  CAS  Google Scholar 

  • Pericak-Vance MA, Bebout JL, Gaskell Jr PC, Yamaoka LH, Hung WY, Alberts MJ, Walker AP, Bartlett RJ, Haynes CA, Welsh KA, Earl NL, Heyman A, Clark CM, Roses AD (1991) Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Human Genet 48: 1034 – 1050

    CAS  Google Scholar 

  • Powell RR (1974) Psychological effects of exercise therapy in institutionalized geriatric mental patients. J Gerontol 29: 157 – 164

    PubMed  CAS  Google Scholar 

  • Quon D, Wang Y, Catalano R, Scardina JM, Murakami K, Cordell B (1991) Formation of beta-amyloid protein deposits in brains of transgenic mice. Nature 352: 239 – 241

    PubMed  CAS  Google Scholar 

  • Regeur L, Jensen GB, Pakkenberg H, Evans SM, Pakkenberg B (1994) No global neocortical nerve cell loss in brains from senile dementia of Alzheimer’s type. Neurobiol Aging 15: 347 – 352

    PubMed  CAS  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the E4 allele for apolipoprotein E. N Engl J Med 334: 752 – 758

    CAS  Google Scholar 

  • Rinne JO, Paljarvi L, Rinne UK (1987) Neuronal size and density in the nucleus basalis of Meynert in Alzheimer’s disease. J Neurol Sci 79: 67 – 76

    PubMed  CAS  Google Scholar 

  • Roberts GW, Allsop D, Bruton CJ (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatr 24: 173 – 182

    Google Scholar 

  • Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 5: 2801 – 2808

    PubMed  CAS  Google Scholar 

  • Rossor MN (1993) Molecular pathology of Alzheimer’s disease. J Neurol Neurosurg Psychiatr 56: 583 – 586

    PubMed  CAS  Google Scholar 

  • Rozemuller JM, Eikelenboom P, Stam FC, Beyreuther K, Masters CL (1989) A4 protein in Alzheimer’s disease; primary and secondary cellular events in extracellular amyloid deposition. J Neuropath Exp Neurol 48: 674 – 691

    PubMed  CAS  Google Scholar 

  • Rudelli RD, Ambler MW, Wisniewski HM (1984) Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol (Berl) 64: 273 – 381

    CAS  Google Scholar 

  • Sajdel-Sulkowska EM, Marotta CA (1984) Alzheimer’s disease brain: Alterations in RNA levels and in a ribonuclease-inhibitor complex. Science 225: 947 – 949

    PubMed  CAS  Google Scholar 

  • Salehi A, Lucassen PJ, Pool CW, Gonatas NK, Ravid R, Swaab DF (1994) Decreased neuronal activity in the nucleus basalis of Alzheimer’s disease as suggested by the size of the Golgi apparatus. Neuroscience 59: 871 – 880

    PubMed  CAS  Google Scholar 

  • Salehi A, Van de Nes JAP, Hofman MA, Gonatas NK, Swaab DF (1995a) Early cytoskeletal changes as shown by Alz-50 are not accompanied by decreased neuronal activity. Brain Res 678: 29 – 39

    CAS  Google Scholar 

  • Salehi A, Ravid R, Gonatas NK, Swaab DF (1995b) Decreased activity of hippocampal neurons in Alzheimer’s disease is not related to the presence of neurofibrillary tangles. J Neuropathol Exp Neurol 54: 704 – 709

    PubMed  CAS  Google Scholar 

  • Salehi A, Heyn S, Gonatas NK, Swaab DF (1995c) Decreased protein synthetic activity of the hypothalamic tuberomammillary nucleus in Alzheimer’s disease as suggested by a smaller Golgi apparatus. Neurosci Lett 193: 29 – 32

    PubMed  CAS  Google Scholar 

  • Salmon E, Gregoire MC, Delfiore G, Lemaire C, Degueldre C, Franck G, Comar D (1996) Combined study of cerebral glucose metabolism and [11C]methionine accumulation in probable Alzheimer’s disease using positron emission tomography. J Cerebr Blood Flow Metab 16: 399 – 408

    CAS  Google Scholar 

  • Satlin A, Volicer L, Ross V, Herz L, Campbell S (1992) Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer’s disease. Am J Psychiatr 149: 1028 – 1032

    PubMed  CAS  Google Scholar 

  • Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258: 668 – 671

    PubMed  CAS  Google Scholar 

  • Scherder E, Bouma A, Steen L, Swaab D (1995a) Peripheral nerve stimulation in Alzheimer’s disease. A meta-analysis. Alz Res 1: 183 – 184

    Google Scholar 

  • Scherder EJA, Bouma A, Steen AM (1995b) Effects of short-term transcutaneous electrical nerve stimulation on memory and affective behaviour in patients with probable Alzheimer’s disease. Behav Brain Res 67: 211 – 219

    PubMed  CAS  Google Scholar 

  • Scherder EJA, Bouma A, Steen AM (1995c) Effects of simultaneously applied short-term transcutaneous electrical nerve stimulation and tactile stimulation on memory and affective behaviour of patients with probable Alzheimer’s disease. Behav Neurol 8: 3 – 13

    Google Scholar 

  • Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53: 438 – 447

    PubMed  CAS  Google Scholar 

  • Simonian NA, Hyman BT (1993) Functional alterations in Alzheimer’s disease: diminution cytochrome oxidase in the hippocampal formation. J Neuropathol Exp Neurol 52: 580 – 585

    PubMed  CAS  Google Scholar 

  • Simonian NA, Hyman BT (1994) Functional alterations in Alzheimer’s disease: selective mitochondrial-encoded cytochrome oxidase mRNA in the formation. J Neuropathol Exp Neurol 53: 508 – 512

    PubMed  CAS  Google Scholar 

  • Standaert DG, Lee VM-Y, Greenberg BD, Lowery DE, Trojanowski JQ (1991) Molecular features of hypothalamic plaques in Alzheimer’s disease. Am J Pathol 139: 681 – 691

    PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Haines J, Rogaev, Mortilla M, Vaula G, Pericak-Vance M, Foncin J-F, Montesi M, Bruni A, Sorbi S, Rainero I, Pinessi L, Pollen D, Polinsky R, Nee L, Kennedy J, Macciardi, Rogaeva E, Liang Y, Alexandrova N, Lukiw W, Schlumpf K, Tanzi R, Tsuda T, Farrer L, Cantu J-M, Duara R, Amaducci L, Bergamini L, Gusella, Roses A, Crapper McLachlan D (1992) Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nature Genet 2: 330 – 334

    PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993a) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90: 1977 – 1981

    PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Weisgraber KH, Huang DY, Dong L-M, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993b) Binding of human apolipoprotein E to synthetic amyloid beta peptide; isoform specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 8098 – 8102

    CAS  Google Scholar 

  • Suzuki K, Katzman R, Korey SR (1965) Chemical studies on Alzheimer’s disease. J Neuropathol Exp Neurol 24: 211 – 214

    PubMed  CAS  Google Scholar 

  • Swaab DF (1991) Brain aging and Alzheimer’s disease: “wear and tear” versus “use it or lose it”. Neurobiol Aging 12: 317 - 324

    PubMed  CAS  Google Scholar 

  • Swaab DF, Hofman MA (1988) Sexual differentiation of the human hypothalamus: ontogeny of the sexually dimorphic nucleus of the preoptic area. Dev Brain Res 44: 314 – 318

    CAS  Google Scholar 

  • Swaab DF, Fliers E, Partiman T (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and dementia. Brain Res 342: 37 – 44

    PubMed  CAS  Google Scholar 

  • Swaab DF, Grundke-Iqbal I, Iqbal K, Kremer HPH, Ravid R, Van de Nes JAP (1992) Tau and ubiquitin in the human hypothalamus in aging and Alzheimer’s disease. Brain Res 590: 239 – 249

    PubMed  CAS  Google Scholar 

  • Swerdlow R, Marcus DL, Landman J, Kooby D, Frey W, Freedman ML (1994) Brain glucose metabolism in Alzheimer’s disease. Am J Med Sci 308: 141 – 144

    PubMed  CAS  Google Scholar 

  • Tagliavini F, Giaccone G, Verga L, Ghiso J, Frangione B, Bugiani O (1991) Alzheimer patients: preamyloid deposits are immunoreactive with antibodies to extracellular domains of the amyloid precursor protein. Neurosci Lett 128: 117 – 120

    PubMed  CAS  Google Scholar 

  • Tate B, Aboody-Guterman KS, Morris AM, Walcott EC, Majocha RE, Marotta CA (1992) Disruption of circadian regulation by brain grafts that overexpresses Alzheimer β/A4 amyloid. Proc Natl Acad Sci USA 89: 7090 – 7094

    PubMed  CAS  Google Scholar 

  • Taylor GR, Carter GI, Crow TJ, Johnson JA, Fairbairn AF (1986) Recovery and measurement of specific RNA species from tissue: a general reduction in Alzheimer’s disease detected by hybridization. Exp Mol Pathol 44: 111 – 116

    PubMed  CAS  Google Scholar 

  • Terry RD, Hansen LA, DeTeresa R, Davies P, Tobias H, Katzman R (1987) Senile dementia of the Alzheimer type without neocortical neurfibrillary tangles. J Neuropath Exp Neurol 46: 262 – 268

    PubMed  CAS  Google Scholar 

  • Van Broeckhoven C, Backhovens H, Cruts M, De Winter G, Bruyland M, Cras P, Martin J-J (1992) Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. Nature Genet 2: 335 – 339

    PubMed  Google Scholar 

  • Van de Nes JAP, Kamphorst W, Ravid R, Swaab DF (1993) The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer’s disease patients. Brain 116: 103 – 115

    PubMed  Google Scholar 

  • Van de Nes JAP, Kamphorst W, Swaab DF (1994) Arguments for and against the primary amyloid local induction hypothesis of the pathogenesis of Alzheimer’s disease. Ann Psychiat 4: 95 – 111

    Google Scholar 

  • Van der Woude PF, Goudsmit E, Wierda M, Purba JS, Hofman MA, Bogte H, Swaab DF (1995) No vasopressin cell loss in the human paraventricular and supraoptic nucleus during aging and in Alzheimer’s disease. Neurobiol Aging 16: 11 – 18

    PubMed  Google Scholar 

  • West MJ, Coleman PD, Flood DG, Tronsoco JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344: 769 – 772

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delong MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237 – 1239

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White CL, Clark AW, Price DL (1983) Neuronal loss in the basal forebrain cholinergic system is more marked in Alzheimer’s disease than in senile dementia of the Alzheimer type. Ann Neurol 14: 149

    Google Scholar 

  • Wirak DO, Bayney R, Ramabhadran TV, Fracasso RP, Hart JT, Hauer PE, Hsiau P, Pekar SK, Scangos GA, Trapp BD, Unterbeck AJ (1991) Deposits of amyloid protein in the central nervous system of transgenic mice. Science 253: 1 – 2

    Google Scholar 

  • Wisniewski HM, Wegiel J (1995) The neuropathology of Alzheimer’s disease. Neuroimaging Clin N Am 5 (1): 45 – 57

    PubMed  CAS  Google Scholar 

  • Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatr 27: 563 – 572

    CAS  Google Scholar 

  • Witting W, Mirmiran M, Bos NP, Swaab DF (1993) Effect of light intensity on diurnal sleep-wake distribution in young and old rats. Brain Res Bull 30: 157 – 162

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swaab, D.F., Lucassen, P.J., van de Nes, J.A.P., Ravid, R., Salehi, A. (1997). Reduced Neuronal Activity is One of the Major Hallmarks of Alzheimer’s Disease. In: Hayman, B.T., Duyckaerts, C., Christen, Y. (eds) Connections, Cognition and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60680-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60680-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64504-4

  • Online ISBN: 978-3-642-60680-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics