Cortical Mapping of Pathological Tau Proteins in Several Neurodegenerative Disorders

Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)


One of the main features of numerous neurodegenerative disorders is the presence of specific inclusions in the cerebral cortex. In most of these disorders, these inclusions correspond to the aggregation of abnormal filaments. Neurofibrillary tangles (NFT) are commonly found in Alzheimer’s disease (AD), amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam (ALS/PDC), head injury, Hallervorden-Spatz disease and progressive supranuclear palsy (PSP). Pick’s disease (PiD), a form of fronto-temporal dementia, is characterized by the presence of chromatolytic neurons and Pick bodies (PB; Brion et al. 1991). Despite many microscopic and ultrastructural differences, these inclusions share similar antigenic properties (Dickson et al. 1985; Delacourte et al. 1990; Hof et al. 1994a, b). Tau immunoreactivity is observed in NFT of most of these neurodegenerative disorders and anti-Tau antibodies immmunolabel PB (Hof et al. 1994 a).


Progressive Supranuclear Palsy Entorhinal Cortex Neurofibrillary Tangle Progressive Supranuclear Palsy Neurofibrillary Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arriagada PV, Growdon JH, Hedleywhyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s Disease. Neurology 42: 631 – 639PubMedGoogle Scholar
  2. Bouras C, Hof PR, Morrison JH (1993) Neurofibrillary tangle densities in the hippocampal formation in a non-demented population define subgroups of patients with differential early pathologic changes. Neurosci Lett 153: 131 – 135PubMedCrossRefGoogle Scholar
  3. Braak H, Braak E (1988) Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol Appi Neurobiol 14: 39 – 43CrossRefGoogle Scholar
  4. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239 – 259PubMedCrossRefGoogle Scholar
  5. Brion JP, Passareiro H, Nunez J, Flament-Durand J (1985) Immunological detection of Tau protein in neurofibrillary tangles of Alzheimer’s disease. Arch Biol 95: 229 – 235Google Scholar
  6. Brion S, Plas J, Jeanneau A (1991) Pick’s disease - a clinico-pathological point of view. Rev Neurol 147: 693 – 704PubMedGoogle Scholar
  7. Buée-Scherrer V, Hof PR, Buée L, Leveugle B, Vermersch P, Perl DP, Olanow CW, Delacourte A (1996a) Hyperphosphorylated Tau proteins differentiate corticobasal degeneration and Pick’s disease. Acta Neuropathol 91, 351 – 359CrossRefGoogle Scholar
  8. Buée-Scherrer V, Condamines O, Mourton-Gilles C, Jakes R, Goedert M, Pau B, Delacourte A (1996b) AD 2, a phosphorylation-dependent monoclonal antibody directed against Tau proteins found in Alzheimer’s disease. Mol Brain Res 39: 79 – 88CrossRefGoogle Scholar
  9. Cummings JL, Benson DF (1984) Subcortical dementia: review of an emerging concept. Arch Neurol 41: 874 – 879PubMedGoogle Scholar
  10. Delacourte A, Flament S, Dibe EM, Hublau P, Sablonnière B, Hémon B, Sherrer V, Défossez A (1990) Pathological proteins Tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer’s disease. Demonstration with a panel of antibodies against Tau proteins. Acta Neuropathol 80: 111 – 117PubMedCrossRefGoogle Scholar
  11. Delacourte A, Robitaille Y, Sergeant N, Buée L, Hof PR, Wattez A, Laroche-Cholette A, Mathieu J, Chagnon P, Gauvreau D (1996) Specific pathological Tau protein variants characterize Pick’s disease. J Neuropathol Exp Neurol 55: 159 – 168PubMedCrossRefGoogle Scholar
  12. Dickson WD, Kress Y, Crowe A, Yen SH (1985) Monoclonal antibodies to Alzheimer neurofibrillary tangles. II: Demonstration of a common antigenic determinant between ANT and neurofibrillary degeneration in progressive supranuclear palsy. Am J Pathol 120: 292 – 303PubMedGoogle Scholar
  13. Flament S, Delacourte A, Delaère P, Duyckaerts C, Hauw J-J (1990) Correlation between microscopical changes and tau 64 and 69 biochemical detection in senile dementia of the Alzheimer type. Tau 64 and 69 are reliable markers of the neurofibrillary degeneration. Acta Neuropathol 80: 212 – 215PubMedCrossRefGoogle Scholar
  14. Flament S, Delacourte A, Verny M, Hauw J-J, Javoy-Agid F (1991) Abnormal tau proteins in progressive supranucelar palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81: 591 – 596PubMedCrossRefGoogle Scholar
  15. Giannakopoulos P, Hof PR, Bouras C (1995) Age versus ageing as a cause of dementia. Lancet 346: 1486 – 1487PubMedCrossRefGoogle Scholar
  16. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16: 460 – 465PubMedCrossRefGoogle Scholar
  17. Gustafson L (1987) Frontal lobe degeneration of non Alzheimer type. II. Clinical picture and differential diagnosis. Arch Gerontol Geriatr 6: 209 – 223PubMedCrossRefGoogle Scholar
  18. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913 – 4917PubMedCrossRefGoogle Scholar
  19. Hakim AM, Mathieson G (1979) Dementia in Parkinson’s disease: a neuropathologic study. Neurology 29: 1204 – 1214Google Scholar
  20. Hauw J-J, Verny M, Delaère P, Cervera P, He Y, Duyckaerts C (1990) Constant neurofibrillary changes in the neocortex in progressive supranuclear palsy. Basic differences with Alzheimer’s disease and aging. Neurosci Lett 119: 182 – 186PubMedCrossRefGoogle Scholar
  21. Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease. II. Primary and secondary visual cortex. J Comp Neurol 301: 55 – 64PubMedCrossRefGoogle Scholar
  22. Hof PR, Bierer LM, Perl DP, Delacourte A, Buée L, Bouras C, Morrison JH (1992a) Evidence for early vulnerability of the medial and inferior aspects of the temporal lobe in a 82-year-old patient with preclinical signs of dementia. Regional and laminar distribution of neurofibrillary tangles and senile plaques. Arch Neurol 49: 946 – 953Google Scholar
  23. Hof PR, Delacourte A, Bouras C (1992b) Distribution of cortical neurofibrillary tangles in progressive supranuclear palsy: a quantitative analysis of six cases. Acta Neuropathol (Berl) 84: 45 – 51CrossRefGoogle Scholar
  24. Hof PR, Bouras C, Perl DP, Morrison JH (1994a) Quantitative neuropathology analysis of Pick’s disease cases: cortical distribution of Pick bodies and coexistence with Alzheimer’s disease. Acta Neuropathol 87: 115 – 124PubMedCrossRefGoogle Scholar
  25. Hof PR, Perl DP, Loerzel J, Steele JC, Morrison JH (1994b) Amyotrophic lateral sclerosis and parkinsonism-dementia of Guam: differences in neurofibrillary tangles distribution and density in the hippocampal formation and neocortex. Brain Res 650: 107 – 116CrossRefGoogle Scholar
  26. Hyman BT, West HL, Gomez-Isla T, Mui S (1995) Quantitative neuropathology in Alzheimer’s disease: neuronal loss in high-order association cortex parallels dementia. In: Iqbal K, Mortimer JA, Winblad B, Wisniewski HM (eds) Research advances in Alzheimer’s disease and related disorders. Wiley, New York, pp 453 – 460Google Scholar
  27. Jellinger K, Riederer P, Tomonaga M (1980) Progressive supranuclear palsy: clinico-pathological and biochemical studies. J Neural Trans (suppl 16 ): 111 – 128Google Scholar
  28. Lee VMY, Balin BJ, Otvos L, Trojanowski JQ (1991) A68: A major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251: 675 – 678PubMedCrossRefGoogle Scholar
  29. Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distribution of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7: 1799 – 1808PubMedGoogle Scholar
  30. Matsuo ES, Shin RW, Billingsley ML, Vandevoorde A, Oconnor M, Trojanowski JQ, Lee VMY (1994) Biopsy-derived adult human brain Tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament Tau. Neuron 13: 989 – 1002PubMedCrossRefGoogle Scholar
  31. Morris JC, McKeel DW, Storandt M, Rubin EH, Price JL, Grant EA, Ball MJ, Berg L (1991) Very mild Alzheimer’s disease: informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology 41: 469 – 478PubMedGoogle Scholar
  32. Sergeant N, Bussiere T, Vermersch P, Lejeune JP, Delacourte A (1995) Isoelectric point differentiates PHF-Tau from biopsy-derived human brain tau proteins. Neuroreport 6: 2217 – 2220PubMedCrossRefGoogle Scholar
  33. Tomlinson BE, Blessed G, Roth M (1968) Observation on the brain of non-demented old people. J Neurol Sci 7: 331 – 356PubMedCrossRefGoogle Scholar
  34. Tomonaga M (1977) Ultrastructure of neurofibrillary tangles in progressive supranucelar palsy. Acta Neuropathol 37: 177 – 181PubMedCrossRefGoogle Scholar
  35. Vermersch P, Frigard B, Delacourte A (1992a) Mapping of neurofibrillary degeneration in Alzheimer’s disease: evaluation of heterogeneity using the quantification of abnormal Tau proteins. Acta Neuropathol 85: 48 – 54CrossRefGoogle Scholar
  36. Vermersch P, Frigard B, David JP, Fallet-Bianco C, Delacourte A (1992b) Presence of abnormal tau proteins in the entorhinal cortex in aged non demented subjects. Neurosci Lett 144: 143 – 146CrossRefGoogle Scholar
  37. Vermersch P, Delacourte A, Javoy-Agid F, Hauw J-J, Agid Y (1993) Dementia in Parkinson’s disease: biochemical evidence for cortical involvement using the immunodetection of abnormal Tau proteins. Ann Neurol 33: 445 – 450PubMedCrossRefGoogle Scholar
  38. Vermersch P, Robitaille Y, Bernier L, Wattez A, Gauvreau D, Delacourte A (1994) Biochemical mapping of neurofibrillary degeneration in a case of progressive supranuclear palsy: evidence of general cortical involvement. Acta Neuropathol 87: 572 – 577PubMedCrossRefGoogle Scholar
  39. Vermersch P, David JPh, Frigard B, Fallet-Bianco C, Wattez A, Petit H, Delacourte A (1995a) Cortical mapping of Alzheimer pathology in brains of aged non-demented subjects. Prog Neuropsychopharmacol Biol Psychiat 19: 1035 – 1047CrossRefGoogle Scholar
  40. Vermersch P, Bordet R, Ledoze F, Ruchoux MM, Chapon F, Thomas P, Destée A, Lechevalier B, Delacourte A (1995b) Demonstration of a specific profile of pathological Tau proteins in frontotemporal dementia cases. C R Acad Sci 318: 439 – 445Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Unité INSERM 422Lille cedexFrance

Personalised recommendations