Cortical Feedforward and Cortical Feedback Neural Systems in Alzheimer’s Disease

Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)


This chapter provides a brief review of the principles of organization that relate to long association axons systems in the cerebral cortex. In particular, feedforward sensory systems are traced to their endstations in the entorhinal/hippocampal cortex, the amygdala and the nucleus basalis of Meynert. Feedback projections to the cerebral cortex from these limbic structures are also highlighted. These cortical connections are discussed relative to the topography of pathology in Alzheimer’s disease and the fact that neurofibrillary tangles invariantly affect these cortical systems early in the illness. It is argued that the co-occurrence of pathology in the endstations of feedforward systems and the origin of initial feedback systems is coupled tightly to alterations of memory in Alzheimer’s disease and other cognitive changes associated with the disorder. Widespread association cortex pathology, seen at endstage Alzheimer’s disease, is related likely to degree, or density, of impairment in the disorder, but may be secondary to the behaviorally disruptive consequences of early and invariant limbic system pathology.


Entorhinal Cortex Neurofibrillary Tangle Basal Forebrain Nucleus Basalis Neuritic Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fasciularis). J Comp Neurol 230: 465 – 496PubMedCrossRefGoogle Scholar
  2. Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed.) The amygdala. Wiley-Liss, New York, pp 1 – 66Google Scholar
  3. Arendt T, Bigi V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61: 101 – 108CrossRefGoogle Scholar
  4. Arendt T, Bigl V, Arendt A, Tennstedt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14: 1 – 14PubMedCrossRefGoogle Scholar
  5. Arnold S, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuoranatomical distribution of neurofibrillary tangles and neuritic plaques in the central cortex of patients with Alzheimer’s disease. Cereb Cortex 1: 103 – 116PubMedCrossRefGoogle Scholar
  6. Asanuma C (1989) Axonal arborizations of a magnocellular basal nucleus input and their relation to the neurons in the thalamic reticular nucleus of rats. Proc Natl Acad Sci USA 86: 4746 – 4750PubMedCrossRefGoogle Scholar
  7. Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252: 415 – 422PubMedCrossRefGoogle Scholar
  8. Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol (Berl) 68: 325 – 332.CrossRefGoogle Scholar
  9. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239 – 259PubMedCrossRefGoogle Scholar
  10. Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6 – 31.PubMedCrossRefGoogle Scholar
  11. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8: 4007 – 4026.PubMedGoogle Scholar
  12. Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8: 521 – 545.PubMedCrossRefGoogle Scholar
  13. Damasio AR (1988) The brain binds entities and events by multiregional activation from convergence zones. Neural Comp 1: 123 – 132CrossRefGoogle Scholar
  14. Damasio AR (1989) The time-locked multiregional retroactivation: A systems level proposal for the neural substrates of recall and recognition. Cognition 33: 25 – 62.PubMedCrossRefGoogle Scholar
  15. Damasio AR (1994) Descartes’ Error: Emotion, reason, and the human brain. Grosset/Putnam, New YorkGoogle Scholar
  16. Davies P, Malone AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2: 1403PubMedCrossRefGoogle Scholar
  17. De Kosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 27: 457 – 464CrossRefGoogle Scholar
  18. Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brain stem and olfactory bulb: Review of some functional correlates. Brain Res 93: 385 – 398PubMedCrossRefGoogle Scholar
  19. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1 – 47PubMedCrossRefGoogle Scholar
  20. Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4: 327 – 388CrossRefGoogle Scholar
  21. Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169 – 184PubMedCrossRefGoogle Scholar
  22. Geschwind N (1965) Disconnection syndromes in animals and man. Brain 88: 237 – 294PubMedCrossRefGoogle Scholar
  23. Geula C, Mesulam M-M (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6: 165 – 177PubMedCrossRefGoogle Scholar
  24. Goldman-Rakic PS (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Ann Rev Neurosci 11: 137 – 156PubMedCrossRefGoogle Scholar
  25. Gómez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosc, 16: 4491 – 4500Google Scholar
  26. Gross CG (1992) Representation of visual stimuli in inferior temporal cortex. Phil Trans R Soc Lond 335: 3 – 10CrossRefGoogle Scholar
  27. Hamos JE, Degennaro LJ, Drachman DA (1989) Synaptic loss in Alzheimer’s disease and other dementias. Neurology 39: 355 – 361PubMedGoogle Scholar
  28. Herzog AG, Van Hoesen GW (1976) Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115: 57 – 69PubMedCrossRefGoogle Scholar
  29. Hof PR, Morrison JH (1994) The cellular basis of cortical disconnection in Alzheimer disease and related dementing conditions. In: Terry RD, Katzman R, Bick KL (eds.) Alzheimer disease. Raven Press, New York, pp 197 – 229Google Scholar
  30. Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301: 55 – 64PubMedCrossRefGoogle Scholar
  31. Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301: 44 – 54PubMedCrossRefGoogle Scholar
  32. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease cell specific pathology isolates the hippocampal formation. Science 225: 1168 – 1170PubMedCrossRefGoogle Scholar
  33. Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472 – 481PubMedCrossRefGoogle Scholar
  34. Hyman BT, Kromer LJ, Van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450: 392 – 397PubMedCrossRefGoogle Scholar
  35. Hyman BT, West HL, Gómez-Isla T, Mui S (1995) Quantitative neuropathology in Alzheimer’s disease: Neuronal loss in high-order association cortex parallels dementia. In: Iqbal K, Mortimer JA, Winblad B, Wisniewski HM (eds.) Research advances in Alzheimer’s disease and related disorders. John Wiley & Sons, New York, pp 453 – 460Google Scholar
  36. Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey. II. Cortical afferents. J Comp Neurol 264: 326 – 355PubMedCrossRefGoogle Scholar
  37. Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162: 285 – 308PubMedCrossRefGoogle Scholar
  38. Jones EG (1990) Determinants of the cytoarchitecture of the cerebral cortex. In: Edelman GM, Gall WE, Cowan WM (eds.) Signal and sense. Wiley-Liss, New York, pp 3 – 49Google Scholar
  39. Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 37 – 56PubMedCrossRefGoogle Scholar
  40. Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167: 385 – 420PubMedCrossRefGoogle Scholar
  41. Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to the frontal and parietal cortex in the rhesus monkey. Science 187: 660 – 662PubMedCrossRefGoogle Scholar
  42. Kosel KC, Van Hoesen GW, Rosene DL (1982) Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244: 201 – 213PubMedCrossRefGoogle Scholar
  43. Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR (1990) Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37: 377 – 385PubMedCrossRefGoogle Scholar
  44. Levey AI, Hallanger AE, Wainer BH (1987) Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci Lett 74: 7 – 13PubMedCrossRefGoogle Scholar
  45. Masliah E, Terry RD, Alford M, De Teresa R, Hansen LA (1991) Cortical and subcortical patterns of synaptophysin-like immunoreactivity in Alzheimer’s disease. Am J Pathol 138: 235 – 246PubMedGoogle Scholar
  46. Mesulam M-M, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch.4) in the rhesus monkey. Brain Res 107: 253 – 274Google Scholar
  47. Mesulam M-M, Van Hoesen GW (1976) Acetylcholinesterase containing basal forebrain neurons in the rhesus monkey project to neocortex. Brain Res 109: 152 – 157PubMedCrossRefGoogle Scholar
  48. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (subsantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214: 170 – 197PubMedCrossRefGoogle Scholar
  49. Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Res. 13: 13 – 36PubMedCrossRefGoogle Scholar
  50. Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. Cereb Cortex 4: 3 – 61Google Scholar
  51. Pearson RCA, Gather KC, Bridal P, Power TPS (1983) The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res 259: 132 – 136PubMedCrossRefGoogle Scholar
  52. Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1: 1242 – 1259PubMedGoogle Scholar
  53. Rockland KS, Pandya DN (1979) Laminar origins and termination of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179: 3 – 20PubMedCrossRefGoogle Scholar
  54. Rockland KS, Pandya DN (1981) Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus. Brain Res 212: 249 – 270Google Scholar
  55. Rockland KS, Drash GW (1996) Collateralized divergent feedback connections that target multiple cortical areas. J Comp Neurol 373: 529 – 548PubMedCrossRefGoogle Scholar
  56. Rockland KS, Van Hoesen GW (1994) Direct temporal-occipital feedback connections to striate cortex (VI) in the Macaque monkey. Cereb Cortex 4: 300 – 313PubMedCrossRefGoogle Scholar
  57. Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315 – 317PubMedCrossRefGoogle Scholar
  58. Suzuki WA, Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14: 1856 – 1877PubMedGoogle Scholar
  59. Terry RD, Masliah E, Salmon DP (1991) Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 41: 572 – 580CrossRefGoogle Scholar
  60. Tourtellotte WG, Van Hoesen GW, Hyman BT, Tikoo RK, Damasio AR (1989) Alz-50 immunoreactivity in the thalamic reticular nucleus in Alzheimer’s disease. Brain Res 515: 227 – 234CrossRefGoogle Scholar
  61. Van Essen DC, Felleman DJ, De Yoe EA, Olavarria J, Knierim J (1990) Modular and hierarchical organization of extrastriate visual cortex in the Macaque monkey. Cold Spring Harbor Symp Quant Biol 3: 679 – 696Google Scholar
  62. Van Hoesen GW (1981) The differential distribution, diversity and sprouting of cortical projections to the amygdala in the rhesus monkey. In: Ben-Ari Y (ed) The amygdaloid complex. Amsterdam, Elsevier/North Holland, pp 77 – 90Google Scholar
  63. Van Hoesen GW (1982) The parahippocampal gyrus. Trends Neurosci 5: 345 – 350CrossRefGoogle Scholar
  64. Van Hoesen GW (1993) The modern concept of association cortex. Curr Opinion Neurobiol 3: 150–154 Van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1: 1 – 8Google Scholar
  65. Vermersch P, Frigard B, Delacourte A (1992) Mapping of neurofibrillary degeneration in Alzheimer’s disease — evaluation of heterogeneity using the quantification of abnormal Tau proteins. Acta Neu-ropathologica, 85: 48 – 54Google Scholar
  66. Wenk H, Bigl V, Meyer V (1980) Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Res Rev 2: 295 – 316CrossRefGoogle Scholar
  67. Whitehouse PJ, Price DL, Clark AW, Coyle JT, De Long MR (1981) Alzheimer’s disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122 – 126PubMedCrossRefGoogle Scholar
  68. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, De Long MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237 – 1239PubMedCrossRefGoogle Scholar
  69. Wilcock GK, Esiri MM, Bowen DM, Smith CCT (1983) The nucleus basalis in Alzheimer’s disease: cell counts and cortical biochemistry. Neuropathol Appl Neurobiol 9: 175 – 179PubMedCrossRefGoogle Scholar
  70. Zeki SM (1975) The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. Cold Spring Harbor Symp Quant Biol 40: 591 – 600Google Scholar
  71. Zeki S (1990) Functional specialization in the visual cortex: The generation of separate constructs and their multistage integration. In: Edelman GM, Gall WE, Cowan WM (eds.). Signal and sense. Wiley-Liss, New York, pp 85 – 130Google Scholar
  72. Zeki S (1993) The visual association cortex. Curr Opinion Neurobiol 3: 155 – 159CrossRefGoogle Scholar
  73. Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335: 311 – 317PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Department of Anatomy and NeurologyThe University of IowaIowa CityUSA

Personalised recommendations