Aspects of Cortical Destruction in Alzheimer’s Disease

Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)


Alzheimer’s disease is an immutably progressing dementing disorder. Its major pathologic hallmark is the development of cytoskeletal changes in a few susceptible neuronal types. These changes do not occur inevitably with advancing age, but once the disease has begun, spontaneous recovery or remissions are not observed.

The initial cortical changes develop in the poorly myelinated transentorhinal region of the medial temporal lobe. The destructive process then follows a predictable pattern as it extends into other cortical areas. Location of the tanglebearing neurons and the severity of changes allow the distinction of six stages in disease propagation (transentorhinal stages I–II: clinically silent cases; limbic stages III-IV: incipient Alzheimer’s disease; neocortical stages V-VI: fully developed Alzheimer’s disease). A small number of cases display particularly early changes, indicating that advanced age is not a prerequisite for the evolution of the lesions. Alzheimer’s disease is thus an age-related, but not an agedependent, disease. The degree of brain destruction at stages III–IV often leads to the appearance of initial clinical symptoms, while stages V–VI represent fully developed Alzheimer’s disease. Assessment of stage V–VI cases allows estimation of the rate of prevalence of the disease.

The pattern of appearance of the neurofibrillary changes bears a striking resemblance to the inverse sequence of cortical myelination. Factors released by oligodendrocytes exert important influence upon nerve cells and suppress disordered neuritic outgrowth. The lack of such factors due to premature dysfunction of oligodendrocytes could contribute to imbalances in the neuronal cytoskeleton and eventually initiate the development of neurofibrillary changes.


Hippocampal Formation Neurobiol Aging Core Field Cortical Destruction Neurofibrillary Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander GE, Crutcher MD, De Long MR (1990) Basal ganglia-thalamocortical circuits: parallel sub-strates for motor, oculomotor, “prefrontal” and “limbic” functions. Progr Brain Res 85: 119 – 146CrossRefGoogle Scholar
  2. Alzheimer A (1990) Über eine eigenartige Erkrankung der Hirnrinde. Centralbl Nervenheilk Psychiatr (Leipzig) 30: 177 – 179Google Scholar
  3. Amaral DG (1987) Memory: anatomical organization of candidate brain regions. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology: The nervous system, V: Higher functions of the nervous system. 5th ed. Amer Physiol Soc, Bethesda, pp 211 – 294Google Scholar
  4. Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos E (ed) The human nervous system. Academic Press, New York, pp 711 – 756Google Scholar
  5. Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1 – 66Google Scholar
  6. Arnold SE, Hyman BT, Flory J, Damasio AR, van Hoesen GW (1991) The topographical and neuroana-tomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex 1: 103 – 116PubMedCrossRefGoogle Scholar
  7. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992 a) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631–639Google Scholar
  8. Arriagada PV, Marzloff L, Hyman BT (1992b) Distribution of Alzheimer-type pathologic changes in non-demented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42: 1681 – 1688PubMedGoogle Scholar
  9. Bachman DL, Wolf PA, Linn RT, Knoefel JE, Cobb JL, Belanger AJ, White LR, D’Agostino RB (1993) Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham study. Neurology 43: 515 – 519PubMedGoogle Scholar
  10. Balazs L, Leon M (1994) Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem Res 19: 1131 – 1137PubMedCrossRefGoogle Scholar
  11. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Wisniewski HM (1989) Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477: 90 – 99PubMedCrossRefGoogle Scholar
  12. Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease. Neurosci Lett 162: 179 – 182PubMedCrossRefGoogle Scholar
  13. Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16: 661 – 674PubMedCrossRefGoogle Scholar
  14. Berg L, Morris JC (1994) Diagnosis. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer Disease. Raven Press, New York, pp 9 – 25Google Scholar
  15. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554 – 567PubMedCrossRefGoogle Scholar
  16. Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin. Braak H,Google Scholar
  17. Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82: 239 – 259PubMedCrossRefGoogle Scholar
  18. Braak H, Braak E (1994) Pathology of Alzheimer’s disease. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 585 – 613Google Scholar
  19. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol. 92: 197 – 201PubMedCrossRefGoogle Scholar
  20. Braak H, Duyckaerts C, Braak E, Piette F (1993) Neuropathological staging of Alzheimer-related changes correlates with psychometrically assessed intellectual status. In: Corian B, Iqbal K, Nicolini M, Winblad B, Wisniewski H, Zatta P (eds) Alzheimer’s disease: Advances in Clinical and Basic Research. Third International Conference on Alzheimer’s Disease and Related Disorders. Wiley, Chichester, pp 131 – 137Google Scholar
  21. Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103: 455 – 490PubMedCrossRefGoogle Scholar
  22. Brodmann K (1910) Feinere Anatomie des Großhirns. In: Lewandowsky M (ed) Handbuch der Neurologie, Vol. 1, Springer, Berlin, pp 206 – 307Google Scholar
  23. Cadelli DS, Bandtlow CE, Schwab ME (1992) Oligodendrocyte- and myelin-associated inhibitors of neurite outgrowth: their involvement in the lack of CNS regeneration. Exp Neurol 115: 189 – 192PubMedCrossRefGoogle Scholar
  24. Choi BH (1995) Oxidative stress and Alzheimer’s disease. Neurobiol Aging 16: 675 – 678PubMedCrossRefGoogle Scholar
  25. Corey-Bloom J, Galasko D, Thal LJ (1994) Clinical features and natural history of Alzheimer’s disease. In: Calne DP (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 631 – 645Google Scholar
  26. Corrada M, Brookmeyer R, Kawas C (1995) Sources of variability in prevalence rates of Alzheimer’s disease. Int J Epidemiol 24: 1000 – 1005PubMedCrossRefGoogle Scholar
  27. Damasio AR, Damasio H (1991) Disorders of higher brain function. In: Rosenberg RN (ed) Comprehensive neurology. Raven Press, New York, pp 639 – 657Google Scholar
  28. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen SH, Aronson MK (1991) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13: 179 – 189CrossRefGoogle Scholar
  29. Dickson DW, Ksiezak-Reding H, Liu WK, Davies P, Crowe A, Yen S HC (1992) Immunocytochemistry of neurofibrillary tangles with antibodies to subregions of tau protein: identification of hidden and cleaved tau epitopes and a new phosphorylation site. Acta Neuropathol 84: 596 – 605PubMedCrossRefGoogle Scholar
  30. Duyckaerts C, He Y, Seilhean D, Delaère P, Piette F, Braak H, Hauw JJ (1994) Diagnosis and staging of Alzheimer’s disease in a prospective study involving aged individuals. Neurobiol Aging 15 (Suppl 1): 140 – 141Google Scholar
  31. Duyckaerts C, Delaère P, He Y, Camilleri S, Braak H, Piette F, Hauw JJ (1995) The relative merits of tau-and amyloid markers in the neuropathology of Alzheimer’s disease. In: Bergener M, Finkel SI (eds) Treating Alzheimer’s and other dementias. Springer, New York, pp 81 – 89Google Scholar
  32. Ebly EM, Parhad IM, Hogan DB, Fung TS (1994) Prevalence and types of dementia in the very old: results from the Canadian study of health and aging. Neurology 44; 1593 – 1600PubMedGoogle Scholar
  33. Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1 – 47PubMedCrossRefGoogle Scholar
  34. Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, LeipzigGoogle Scholar
  35. Gearing M, Mirra SS, Hedreen JC, Sumi SM, Hansen LA, Heyman A (1995) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part X. Neuropathology confirmation of the clinical diagnosis of Alzheimer’s disease. Neurology 45: 461 – 466PubMedGoogle Scholar
  36. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16: 460 – 465PubMedCrossRefGoogle Scholar
  37. Goedert M, Spillantini MG, Crowther RA (1991) Tau proteins and neurofibrillary degeneration. Brain Pathol 1: 279 – 286PubMedCrossRefGoogle Scholar
  38. Hardy R, Reynolds R (1993) Neuron-oligodendroglial interactions during central nervous system development. J Neurosci Res 36: 121 – 126PubMedCrossRefGoogle Scholar
  39. Harrell LE, Callaway R, Powers R (1993) Autopsy in dementing illness: who participates? Alzheimer Dis Assoc Disord 7: 80 – 87PubMedCrossRefGoogle Scholar
  40. Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Progr Brain Res 87: 109–165CrossRefGoogle Scholar
  41. Hofman A, Rocca W, Brayne C (1991) The prevalence of dementia in Europe: a collaborative study of the 1980–1990 findings. Int J Epidemiol 20: 736 – 748PubMedCrossRefGoogle Scholar
  42. Hyman BT, van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168 – 1170PubMedCrossRefGoogle Scholar
  43. Hyman BT, van Hoesen GW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40: 1721 – 1730PubMedGoogle Scholar
  44. Hyman BT, Gomez-Isla T (1994) Alzheimer’s disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging 15: 353 – 354PubMedCrossRefGoogle Scholar
  45. Iqbal K, Alonso AC, Gong CX, Khatoon S, Singh TJ, Grundke-Iqbal I (1994) Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Molecular Neurobiol 9: 119 – 123CrossRefGoogle Scholar
  46. Jellinger K, Braak H, Braak E, Fischer P (1991) Alzheimer lesions in the entorhinal region and isocortex in Parkinson’s and Alzheimer’s diseases. Ann New York Acad Sci 640: 203 – 209Google Scholar
  47. Kapfhammer JP, Schwab ME (1994) Inverse patterns of myelination and GAP-43 expression in the adult CNS: Neurite growth inhibitors as regulators of neuronal plasticity. J Comp Neurol 340: 194 – 206PubMedCrossRefGoogle Scholar
  48. Katzman R, Kawas C (1994) The epidemiology of dementia and Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer’s disease. Raven Press, New York, pp 105 - 122Google Scholar
  49. Kemper TL (1978) Senile dementia: a focal disease in the temporal lobe. In: Nandy E (ed) Senile dementia: a biomedical approach. Elsevier, Amsterdam, pp 105 – 113Google Scholar
  50. Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42: 1097 – 1105PubMedGoogle Scholar
  51. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41: 479 – 486PubMedGoogle Scholar
  52. Moossy J, Zubenko GS, Martinez AJ, Rao GR (1988) Bilateral symmetry of morphological lesions in Alzheimer’s disease. Arch Neurol 45: 251 – 254PubMedGoogle Scholar
  53. Mortimer J (1988) Epidemiology of dementia: international comparisons. In: Brody JA, Maddox GL (eds) Epidemiology and aging: an international perspective. Springer, New York, pp 150 – 164Google Scholar
  54. Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64: 209 – 217PubMedCrossRefGoogle Scholar
  55. Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. Progr Brain Res 85: 63 – 94CrossRefGoogle Scholar
  56. Pappolla MA, Omar RA, Kim KS, Robakis NK (1992) Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease. Am J Pathol 140: 621 – 628PubMedGoogle Scholar
  57. Price DL, Sisodia SS (1994) Cellular and molecular biology of Alzheimer’s disease and animal models. Ann Rev Med 45: 435 – 446PubMedCrossRefGoogle Scholar
  58. Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12: 295 – 312PubMedCrossRefGoogle Scholar
  59. Probst A, Langui D, Ulrich J (1991) Alzheimer’s disease: a description of the structural lesions. Brain Pathol 1: 229 – 239PubMedCrossRefGoogle Scholar
  60. Reisberg B, Ferris SH, Kluger A, Franssen E, DeLeon MJ, Mittelman M, Borenstein J, Rameshwar K, Alba R (1989) Symptomatic changes in CNS aging and dementia of the Alzheimer type: Cross-sectional, temporal, and remediable concomitants. In: Bergener M, Reisberg B (eds) Diagnosis and treatment of senile dementia. Springer, Berlin, pp 193 – 223Google Scholar
  61. Reisberg B, Pattschull–Furlan A, Franssen E, Sclan SG, Kluger A, Dingcong L, Ferris SH (1992) Dementia of the Alzheimer type recapitulates ontogeny inversely on specific ordinal and temporal parameters. In: Kostovic I, Knezevic S, Wisniewski HM, Spillich GJ (eds) Neurodevelopment, aging and cognition. Birkhäuser, Boston, pp 345 – 369Google Scholar
  62. Schwab ME (1990) Myelin-associated inhibitors of neurite growth and regeneration in the CNS. Trends Neurosci 13: 452 – 456PubMedCrossRefGoogle Scholar
  63. Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11: 170–175PubMedCrossRefGoogle Scholar
  64. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380–1386PubMedCrossRefGoogle Scholar
  65. Tierney MC, Fisher RH, Lewis AJ, Zorzitto ML, Snow WG, Reid DW, Nieuwstraten P (1988) The NINCDS-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease: a clinicopathologic study of 57 cases. Neurology 38: 359–364Google Scholar
  66. Trojanowski JQ, Shin RW, Schmidt ML, Lee VMY (1995) Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging 16: 335 – 340PubMedCrossRefGoogle Scholar
  67. van Hoesen GW, Hyman BT (1990) Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Progr Brain Res 83: 445 – 457CrossRefGoogle Scholar
  68. van Hoesen GW, Solodkin A (1993) Some modular features of temporal cortex in humans as revealed by pathological changes in Alzheimer’s disease. Cerebral Cortex 3: 465 – 475PubMedCrossRefGoogle Scholar
  69. van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1: 1 – 8PubMedCrossRefGoogle Scholar
  70. Vaughan DW (1984) The structure of neuroglial cells. In: Jones EG, Peters A (eds) Cerebral cortex, vol. 2: Functional properties of cortical cells. Plenum Press, New York, pp 285 – 329Google Scholar
  71. Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Monogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc Natl Acad Sci USA 91: 4766 – 4770PubMedCrossRefGoogle Scholar
  72. Volicer L, Crino PB (1990) Involvement of free radicals in dementia of the Alzheimer’s type: a hypothesis. Neurobiol Aging 11: 567 – 571PubMedCrossRefGoogle Scholar
  73. Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25: 279 – 461Google Scholar
  74. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3 – 70Google Scholar
  75. Zilles K (1990) Cortex: In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 757 – 802Google Scholar
  76. Zola-Morgan S, Squire LR (1993) Neuroanatomy of memory. Ann Rev Neurosci 16: 547 – 563PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Department of AnatomyJ.W. Goethe UniversityFrankfurtGermany

Personalised recommendations