Skip to main content

The Effect of Myelin Disruption on Spinal Cord Regeneration

  • Conference paper
Molecular Signaling and Regulation in Glial Cells

Abstract

The adult central nervous system (CNS) of higher vertebrates has a very limited capacity for regeneration following injury. CNS regeneration in higher vertebrates is primarily restricted to monoaminergic fibres (7), unmyelinated cholinergic axons (7) primary olfactory axons (4), and neurosecretory fibres (14). With these exceptions, damage to the adult CNS most often results in aborted attempts at regeneration followed by degeneration (7, 45). However, some CNS axons will anatomically regenerate and make functional synaptic connections if peripheral nerve segments containing Schwann cells are grafted to a site of CNS injury (l, 13, 45). Similarly, axotomized CNS neurons will extend axons in vivo through implants of fetal (8, 9, 34), or genetically modified (20, 65) CNS tissue. These findings indicate that adult CNS neurons retain intrinsic growth programs which enable long-distance axonal regeneration in the presence of a favorable extraneuronal environment. Nevertheless, the intrinsic neuronal determinants of regeneration may differ in distinct populations of CNS neurons (19,35,63).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo, A.J., Raminsky, M., Bray, G.M., Carbonetto, S., McKerracher, L., Villegas-Perez, M.P., Vidal-Sarz, M. and Carter, D.A. (1991) Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals [Review]. Philosophical Transactions of the Royal Society of London- Series B: Biological Sciences. 331: 337–343.

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong, D.M. (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog. Neurobiol. 26: 273–361.

    Article  PubMed  CAS  Google Scholar 

  3. Bandtlow, C., Zachleder, T. and Schwab, M.E. (1990) Oligodendrocytes arrest neurite growth by contact inhibition. J. Neurosci. 10: 3837–3848.

    PubMed  CAS  Google Scholar 

  4. Barber, P.C. (1981) Axonal growth by newly-formed vomeronasal neurosensory cells in the normal adult mouse. Brain Res. 216: 229–237.

    Article  PubMed  CAS  Google Scholar 

  5. Bekoff, A. (1976) Ontogeny of leg motor output in the chick embryo: a neural analysis. Brain Res. 106: 271–291.

    Article  PubMed  CAS  Google Scholar 

  6. Bensted, J.P.M., Dobbing, J., Morgan, R.S., Reid, R.T.W. and Payling Wright, G. (1957) Neuroglial development and myelination in the spinal cord of the chick embryo. J. Embryol. Exp. Morphol. 5: 428–437.

    Google Scholar 

  7. Bjorklund, A., Katzman, R., Stenevi, U. and West, K.A. (1971) Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurons in the rat spinal cord. Brain Res. 31: 21–33.

    Article  PubMed  CAS  Google Scholar 

  8. Bjorklund, A. and Stenevi, U. (1979) Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. [Review] Physiol. Rev. 59: 62–100.

    PubMed  CAS  Google Scholar 

  9. Bjorklund, A. (1991) Neural transplantation- an experimental tool with clinical possibilities. [Review] TINS. 14: 319–322.

    PubMed  CAS  Google Scholar 

  10. Caroni, P. and Schwab. M.E. (1988) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1: 85–96.

    Article  PubMed  CAS  Google Scholar 

  11. Carroll, W.M., Jennings, A.R. and Mastaglia, F.L. (1984) Experimental demyelinating optic neuropathy induced by intraneural injection of galactocerebroside antiserum. J. Neurol. Sci. 65: 125–135.

    Article  PubMed  CAS  Google Scholar 

  12. Carroll, W.M., Jennings, A.R. and Mastaglia, F.L. (1985) Immunocytochemical study of the glial cell response in antibody-mediated optic nerve demyelination. Neurosci. Lett. Suppl. 19: S49.

    Google Scholar 

  13. David, S. and Aguayo, A.J. (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 214: 931–933.

    Article  PubMed  CAS  Google Scholar 

  14. Dellman, H.P. (1973) Degeneration and regeneration of neurosecretory systems [Review]. Int. Rev. Cytol. 36: 215–315.

    Article  Google Scholar 

  15. Dorfman, S.H., Fry, J.M. Silberberg, D.H. (1979) Antiserum induced myelin inhibition in vitro without complement Brain Res. 177: 105–114.

    Article  PubMed  CAS  Google Scholar 

  16. Dubois-Dalcq, M., Niedieck, B. and Buyse, M. (1970) Action of anticerebroside sera on myelinated tissue cultures. Pathol. Eur. 5: 331–347.

    PubMed  CAS  Google Scholar 

  17. Dyer, C.A. & Benjamins, J.A. (1990) Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes J. Cell Biol. 111: 625–633.

    Article  PubMed  CAS  Google Scholar 

  18. Eidelberg, E., Story, J.L., Walden, J.G. and Meyer, B.L. (1981) Anatomical correlates of return of locomotor function after partial spinal cord lesions in cats. Brain Res. 42: 81–88.

    CAS  Google Scholar 

  19. Fawcett, J.W. (1992) Intrinsic neuronal determinants of regeneration. Trends Neurosci. 15:5–8.

    Article  PubMed  CAS  Google Scholar 

  20. Fisher, L.J. and Gage, F.H. (1993) Grafting in the mammalian central nervous system. [Review] Physiol. Rev. 73: 583–616.

    PubMed  CAS  Google Scholar 

  21. Foran, D.R. and Peterson, A.C. (1992) Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z trangene. J. Neurosci. 12: 4890–4897.

    PubMed  CAS  Google Scholar 

  22. Fry, J.M., Weissbarth, S., Lehrer, G.M. and Bornstein, M.B. (1974) Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue cultures. Science. 183: 540–542.

    Article  PubMed  CAS  Google Scholar 

  23. Glover, J.C. and Petursdottir, GJ. (1991) Regional specificity of developing reticulospinal, vestibulospinal and vestibulo-ocular projections in the chicken embryo. Neurobiol. 22:353–376.

    Article  CAS  Google Scholar 

  24. Glover, J.C. (1993) The development of brain stem projections to the spinal cord in the chicken embryo. Brain Res. Bull. 30: 265–272.

    Article  PubMed  CAS  Google Scholar 

  25. Hamburger, V. and Levi-Montalcini, R. (1949) Proliferation, differentiation and degeneration in the spinal cord ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111: 457.

    Article  PubMed  CAS  Google Scholar 

  26. Hartman, B.K., Agrawal, H.C., Kalmbaach, S. and Shearer, W.T. (1979) Development and maturation of central nervous system myelin: comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. J. Comp. Neurol. 188: 273–290.

    Article  PubMed  CAS  Google Scholar 

  27. Hasan, S.J., Nelson, B.H., Valenzuela, J.I., Keirstead, H.S., Schull, S.E., Ethell, D.W. and Steeves, J.D. (1991) Restor. Neurol. Neurosci. 2:137–154.

    CAS  Google Scholar 

  28. Hasan, S.J., Keirstead, H.S., Muir, G.D. and Steeves, J.D. (1993) Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick. J. Neurosci. 13: 492–507.

    PubMed  CAS  Google Scholar 

  29. Holder, N. and Clarke, J.D.W. (1988) Is there a correlation between continuous neurogenesis and directed axon regeneration in the vertebrate nervous system? TINS. 11: 94–99.

    PubMed  CAS  Google Scholar 

  30. Hruby, S., Alvord, E.C., Jr and Seil, F.J. (1977) Synthetic galactocerebrosides evoke myelination-inhibiting antibodies, Science. 195: 173–175.

    Article  PubMed  CAS  Google Scholar 

  31. Keirstead, H.S., Hasan, S.J., Muir, G.D. and Steeves, J.D. (1992) Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord. Proc. Natl. Acad. Sci. 89: 11664–11668.

    Article  PubMed  CAS  Google Scholar 

  32. Keirstead, H.S., Pataky, D.M., Wisniewska, A.B., Schachner, M. and Steeves, J.D. (1995) In vivo immunological suppression of spinal cord myelin development, (submitted)

    Google Scholar 

  33. Keirstead, H.S., Dyer, J.K., Sholomenko, G.N., McGraw, J., Delaney, K.R. and Steeves, J.D. (1995) Axonal regeneration and physiological activity following transection and immunological disruption of myelin within the hatchling chick spinal cord. J. Neurosci. (in press)

    Google Scholar 

  34. Kromer, L.F., Bjorklund, A. and Stenevi, U. (1981) Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants as bridges. Brain Res. 210: 173–200.

    Article  PubMed  CAS  Google Scholar 

  35. Li, D., Field, P.M. and Raisman, G. (1995) Failure of axon regeneration in postnatal slice entorhino-hippocampal slice coculture is due to maturation of the axon, not that of the pathway or target. Eur. J. Neurosci. 7: 1164–1171.

    Article  PubMed  CAS  Google Scholar 

  36. McClellan, A.D. (1990) Locomotor recovery in spinal-transected lamprey: role of functional regeneration of descending axons from brainstem locomotor command neurons. Neuroscience 37: 781–798

    Article  PubMed  CAS  Google Scholar 

  37. McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J. and Braun, P.E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron (in press).

    Google Scholar 

  38. Macklin, W.B. and Weill, C.L. (1985) Appearance of myelin proteins during development in the chick central nervous system. Dev. Neurosci. 7: 170–178.

    Article  PubMed  CAS  Google Scholar 

  39. Mastaglia, F.L., Carrol, W.M. and Jennings, A.R. (1989) Spinal cord lesions induced by antigalactocerebroside serum Clin. Exp. Neurol. 26: 33–44.

    CAS  Google Scholar 

  40. Morell, P., Quarles, R.H. and Norton, W.T. Formation, structure and biochemistry of myelin. In Siegel, G.J. et al (eds.), Basic Neurochemistry: Molecular, cellular, and medical aspects, 4th ed., New York: Raven Press, 1989, pp. 109–136.

    Google Scholar 

  41. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R. and Filbin, M. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 13: 757–767.

    Article  PubMed  CAS  Google Scholar 

  42. O’Donovan, M., Sernagor, E., Sholomenko, G., Ho, S., Antal, M. and Yee, W. (1992) Development of spinal motor networks in the chick embryo. J. Exp. Zool. 261:261–73.

    Article  PubMed  Google Scholar 

  43. Okado, N. and Oppenheim, R.W. (1985) The onset and development of descending pathways to the spinal cord in chick embryo. J. Comp. Neurol. 232:143–161.

    Article  PubMed  CAS  Google Scholar 

  44. Ozawa, K., Saida, T., Saida, K., Nishitani, H. & Kameyama, M. (1989)In vivo CNS demyelination mediated by anti-galactocerebroside antibody Acta Neuropathol 77: 621–628.

    Article  PubMed  CAS  Google Scholar 

  45. Ramon y Cajal, S. (1959) Degeneration and regeneration of the nervous system. (New York: Oxford UP, 1928) Reprint (May R.M., trans., ed.). New York: Hafner.

    Google Scholar 

  46. Ranscht, B., Clapshaw, P.A., Price, J., Noble, M. and Seifert, W. (1982) Development of oligodendrocytes and Schwann cells studies with a monoclonal antibody against galactocerebroside. Proc. Natl. Acad. Sci. 79: 2709–2713.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenbluth, J., Lui, Z., Guo, D. and Schiff, R. (1994) Inhibition of CNS myelin development in vivo by implantation of anti-GalC hybridoma cells. J. Neurocytol. 23: 699–707.

    Article  PubMed  CAS  Google Scholar 

  48. Sarnat, H. and Netsky, M. (1981) Evolution of the nervous system. New York, NY: Oxford UP.

    Google Scholar 

  49. Schnell, L. and Schwab, M.E. (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature (London) 343: 269–272.

    Article  CAS  Google Scholar 

  50. Schreyer, D.J. and Jones, E.G. (1982) Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats. Neuroscience 7: 1837–1853.

    Article  PubMed  CAS  Google Scholar 

  51. Schwab, M.E. and Caroni, P. (1988) Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8: 2381–2393.

    PubMed  CAS  Google Scholar 

  52. Sergott, R.C., Brown, M.J., Silberberg, D.H. & Lisak, R.P. (1984) Antigalactocerebroside serum demyelinates optic nerve in vivo. J. Neurol. Sci. 64: 297–303.

    Article  PubMed  CAS  Google Scholar 

  53. Shiga, T., Kunzi, R. and Oppenheim, R.W. (1991) Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo. J. Comp. Neurol. 305: 83–95.

    Article  PubMed  CAS  Google Scholar 

  54. Shimizu, I., Oppenheim, R.W., O’Brian, M. and Schneiderman, A.J. (1990) Anatomical and functional recovery following spinal cord transection in the chick embryo. J. Neurobiol. 21:918–937.

    Article  PubMed  CAS  Google Scholar 

  55. Sholomenko, G.N. and Steeves, J.D. (1987) Effects of selective spinal cord lesions on hind limb locomotion in birds. Exp. Neurol. 95: 403–418.

    Article  PubMed  CAS  Google Scholar 

  56. Sholomenko, G.N., Funk, G.D. and Steeves, J.D. (1991a) Avian locomotion activated by brainstem infusion of neurotransmitter agonists and antagonists. I. Acetylcholine, excitatory amino acids and substance P. Exp. Brain Res. 85: 659–673.

    Article  CAS  Google Scholar 

  57. Sholomenko, G.N., Funk, G.D. and Steeves, J.D. (1991b) Avian locomotion activated by brainstem infusion of neurotransmitter agonists and antagonists. II. Gamma-aminobutyric acid. Exp. Brain Res. 85: 674–681.

    Article  PubMed  CAS  Google Scholar 

  58. Sholomenko, G.N., Funk, G.D. and Steeves, J.D. (1991c) Locomotor activities in the decerebrate bird without phasic afferent input. Neuroscience. 40: 257–266.

    Article  PubMed  CAS  Google Scholar 

  59. Sommer, I. and Schachner, M. (1981) Monoclonal antibodies (01 to 04) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Exp. Biol. 83: 311–327.

    CAS  Google Scholar 

  60. Steeves, J.D. and Jordan, L.M. (1980) Localization of a descending pathway in the spinal cord which is necessary for controlled treadmill locomotion. Neurosci. Lett. 20: 283–288.

    Article  PubMed  CAS  Google Scholar 

  61. Steeves, J.D., Sholomenko, G.N. and Webster, D.M.S. (1987) Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds. Brain Res. 401:205–212

    Article  PubMed  CAS  Google Scholar 

  62. Steeves, J.D., Hasan, S.J., Keirstead, H.S., Muir, G.D., Ethell, D.W., Pataky, D.M., McBride, C.B., Rott, M.E. and Wisniewska, A.B. (1993) The embryonic chicken as a model for central nervous system injury and repair. Neuroprotocols. 3: 35–43.

    Article  CAS  Google Scholar 

  63. Tetzlaff, W., Alexander, S., Miller, F. and Bisby, M. (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J. Neurosci. 11: 2528–2544.

    PubMed  CAS  Google Scholar 

  64. Treherne, J.M., Woodward, S.K.A., Varga, Z.M. Ritchie, J.M. and Nicholls, J.G. (1992) Restoration of conduction and growth of axons through injured spinal cord of neonatal oppossum in culture. Proc. Natl. Acad. Sci. U.S.A. 89: 432–434.

    Article  Google Scholar 

  65. Tuszynski, M.H., Peterson, D.A., Ray, J., Baird, A., Nakahara, Y. and Gage, F.H. (1994) Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp. Neurol. 126: 1–14.

    Article  PubMed  CAS  Google Scholar 

  66. Valenzuela, J.I., Hasan, S.J. and Steeves, J.D. (1990) Stimulation of the brainstem reticular formation evokes locomotor activity in embryonic chicken, in ovo. Dev. Brain Res. 56: 13–18.

    Article  CAS  Google Scholar 

  67. Webster, D.M.S. and Steeves, J.D. (1988) Origins of brainstem-spinal projections in the duck and goose. J. Comp. Neurol. 273: 573–583.

    Article  PubMed  CAS  Google Scholar 

  68. Webster, D.M. and Steeves, J.D. (1991) Funicular organization of avian brainstem-spinal projections. J. Comp. Neurol. 312: 467–476.

    Article  PubMed  CAS  Google Scholar 

  69. Zemlan, F.P., Kow, L.M. and Pfaff, D.W. (1983) Effect of interuption of bulbospinal pathways on lordosis, posture and locomotion. Exp. Neurol. 81: 177–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keirstead, H.S., Steeves, J.D. (1997). The Effect of Myelin Disruption on Spinal Cord Regeneration. In: Jeserich, G., Althaus, H.H., Richter-Landsberg, C., Heumann, R. (eds) Molecular Signaling and Regulation in Glial Cells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60669-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60669-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64501-3

  • Online ISBN: 978-3-642-60669-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics