Skip to main content

Chemosensoren für Gase und Lösungsmitteldämpfe

Chemosensoren — Ein kritischer Blick auf den heutigen Stand II

  • Chapter
Analytiker-Taschenbuch

Part of the book series: Analytiker-Taschenbuch ((ANALYTIKERTB,volume 16))

Zusammenfassung

In Anlehnung an den in Band 16 erschienenen Beitrag über Chemo- und Biosensoren zur Messung in Flüssigphasen soll im folgenden eine einführende Darstellung der wichtigsten Gassensoren gegeben werden. Es wurden dabei solche Sensoren berücksichtigt, die zum einen kommerzielle Bedeutung erlangt haben, zum anderen werden aber auch die Sensoren genannt, die sich, dem derzeitigen Stand der Technik nach, noch weitgehend im Stadium von Forschung und Entwicklung befinden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Middelhoek S, Noorlag DJW (1982) Signal Conversion in Solid-State Transucers. Sensors and Actuator 2:211–228

    Article  Google Scholar 

  2. Sensors-A comprehensive Survey (eds: Göpel W, Hesse J, Zemel JN) Vol 1: Fundamentals and General Aspects (Vol eds: Grandke T, Ko WH)

    Google Scholar 

  3. Sensors-A comprehensive Survey (eds: Göpel W, Hesse J, Zemel JN) Vol 2: Chemical and Biochemical Sensors, Part I (Vol eds: Göpel W, Jones TA, Kleitz M, Lundström I, Seiyama T) VCH Verlagsgesellschaft mbH, Weinheim 1991

    Google Scholar 

  4. Sensors-A comprehensive Survey (eds: Göpel W, Hesse J, Zemel JN) Vol 3: Chemical and Biochemical Sensors, Part II (Vol eds: Göpel W, Jones TA, Kleitz M, Lundström I, Seiyama T) VCH Verlagsgesellschaft mbH, Weinheim 1991

    Google Scholar 

  5. Ulimann’s Encyclopedia of Industrial Chemistry, Vol B 6: Chemical and Biochemical Sensors. VCH Verlagsgesellschaft mbH, Weinheim 1994

    Google Scholar 

  6. Chemical Sensor Technology, Vol 1 (ed Seiyama T) Kodansha Ltd., Tokyo, 1988 and Elsevier Science Publisher B., Amsterdam 1988

    Google Scholar 

  7. Chemical Sensor Technology, Vol 4, (ed Yamauchi S), Kodansha Ltd., Tokyo, 1992 and Elsevier Science Publishers BV, Amsterdam 1992

    Google Scholar 

  8. Janata, J Principles of Chemical Sensors, Plenum Press, New York and London 1989

    Google Scholar 

  9. Gas Sensors: Principles, Operation and Development (ed Sberveglieri G), Kluwer Academic Publishers, Dordrecht, Boston, London 1992

    Google Scholar 

  10. Moseley PT, Norris JOW, Williams DE (1991) Technology and Mechanisms of Gas Sensors, Hilger: Bristol, UK

    Google Scholar 

  11. Hauptmann P (1990) Sensoren-Prinzipien und Anwendungen, Carl Hanser, München, Wien

    Google Scholar 

  12. Oehme F (1991) Chemische Sensoren, Vieweg, Braunschweig

    Google Scholar 

  13. Dransfeld I, Behrens R, Weiß T (1992) Handbuch zum Kurs „Chemo-und Biosensorik”. Bd I, 2. Aufl, Astee: Agentur für Sensor-Technologie GmbH, Münster-Roxel

    Google Scholar 

  14. Cammann K, Lemke U, Rohen A, Sander J, Wilken H, Winter B (1991) Chemical Sensors and Biosensors-Principles and Applications. Angew Chem Int Ed Engl 30 (5): 516–539

    Article  Google Scholar 

  15. Dickert F (1992) Chemosensoren für Gase und Lösungsmitteldämpfe. Chemie in unserer Zeit 3:138–143

    Article  Google Scholar 

  16. Sensoren und Mikroelektronik (1993) Wegweisende, serienreife neue Produkte und Verfahren (Hrsg. Bonfig KW), Expert, Ehningen bei Böblingen

    Google Scholar 

  17. Best R (1987) Theorie und Anwendungen des Phased-locked Loops. AT, Aarau

    Google Scholar 

  18. Schulz D (1992) PC-Gestützte Mess-und Regeltechnik. 2. Aufl, Franzis, München

    Google Scholar 

  19. Tränkler H -R. Signal Processing. In [2], Chapter 10, S 280–311

    Google Scholar 

  20. Buydens LMC, Meissen JW (1994) (eds) Chemometrics: Exploring and exploiting chemical information. Katholieke Univeriteit Nijmegen

    Google Scholar 

  21. Gardner JW, Bartlett PN, Dodd GH, Shurmer HV (1990) In: Chemosensory Information Processing (Schild D, ed), Springer, Berlin, pp 131–173

    Google Scholar 

  22. Di Natale C, Davide F, D’Amico A (1995) Pattern recognition in gas sensing: well—stated techniques and advances, Sensors and Actuators B, 23:11–118

    Google Scholar 

  23. Gardner JW (1991) Detection of vapours and odours from a mulisensor array using pattern recognition. Sensors and Actuators B 4:109–115

    Article  Google Scholar 

  24. Gardner JW, Shurmer HV, Tan TT (1992) Application of an electronic nose to the discrimination of coffees’. Sensors and Actuators B 6:71–75

    Article  Google Scholar 

  25. Schweizer -Berberich P -M, Vaihinger S, Goepel W (1994) Characterization of food freshness with sensor arrays. Sensors and Actuators B 18:282–290

    Google Scholar 

  26. Gardner JW, Bartlett PN (1992) Sensors and Sensory Systems for an Electronic Nose. Nato ASI Series, Kluwer

    Google Scholar 

  27. Kaltenmaier K. Calibration of Gas Sensors, in [4], Chapter 16, S 847–866

    Google Scholar 

  28. Göpel W, Oehme F (1987/3) Chemische Feldeffekttransistoren. Hard & Soft, Fachbeilage Mikroperipherik, I

    Google Scholar 

  29. Janata J, Josowicz M, De Vaney DM (1994) Chemical Sensors, in: Anal Chem 66:207 R-228 R

    Google Scholar 

  30. Encyclopedia of Analytical Science (ed.-in-chief Alan Townshend), Volume 8, Sensors, S 4590; Academic Press, Harcourt Brace & Company, Publishers, London, San Diego New York, Boston, Sydney, Tokyo, Toronto

    Google Scholar 

  31. Farrington GC (1981) Solid Ionic Conductors. Sensors and Actuators 1:329–346

    Article  CAS  Google Scholar 

  32. Green M (1981) Lectures on Gas-Solid Interactions, Sensors and Actuators 1:379–391

    Article  CAS  Google Scholar 

  33. Tuller HL (1983) Review of Electrical Properties of Metal Oxides as Applied to Temperature and Chemical Sensing. Sensors and Actuators 4:679–688

    Article  CAS  Google Scholar 

  34. Göpel W (1985) Entwicklung chemischer Sensoren: Empirische Kunst oder systematische Forschung? Techn Messen 52, Teil I: Heft 2/47–58, Teil II: Heft 3/92–105, Teil III: Heft 5/ 175–182

    Google Scholar 

  35. Solid State Gas Sensors (Moseley P, Tofield BC, eds) (1987) Adam Hilger, Bristol and Philadelphia

    Google Scholar 

  36. Weppner W (1987) Solid—State Electrochemical Gas Sensors. Sensors and Actuators 12:117–119

    Article  Google Scholar 

  37. Kudo T, Fueki K (eds) (1990) Solid State Ionics. Kodansha, Tokyo und VCH-Verlag, Weinheim, New York, Basel, Cambridge

    Google Scholar 

  38. Göpel W (8–9/1988) Bio –/Chemische Sensorik, Hard & Soft, Fachbeilage Mikroperipherik X

    Google Scholar 

  39. Pohl JP (1987) Sensorkonzepte mit festen Ionenleitern. GIT Fachz Lab 31: 379

    CAS  Google Scholar 

  40. Wiemhöfer H -D (1987) Elektronen-und Ionenleitende Sensoren, in: Chemische und biochemische Sensoren. Berichtsband AMA-Seminar

    Google Scholar 

  41. Kleitz M, Siebert E, Fabry P, Fouletier J. Solid-State Electrochemical Sensors, in Ref [3], Chapter 8, S 343–428

    Google Scholar 

  42. Geistlinger H (1993) Electronic theory of thin-film gas sensors, Sensors and Actuators B 17:47–60

    Article  CAS  Google Scholar 

  43. Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sensors and Actuators B 23:103–109

    Article  Google Scholar 

  44. Meixner H, Gerblinger J, Lampe U, Fleischer M (1995) Thin-film gas sensors based on semiconducting metal oxides. Sensors and Actuators B 23:119–125

    Article  Google Scholar 

  45. Yamazoe N, Miura N. New Approaches in the Design of Gas Sensors, in Ref [9], Chapter 1, S 1–42

    Google Scholar 

  46. Kocache RMA. Applictions of Oxygenion-conducting Solid Electrolytes, in: Ref. [35], Chapter 1; S 1–16

    Google Scholar 

  47. Leonhard V, Tschulena G, Batelle Institut e.V., Frankfurt/M in: VDI/VDE Technologiezentrum Informationstechnik GmbH (Hrsg.) Band 6: Keramik für chemische Sensoren

    Google Scholar 

  48. Velasco G, Schnell JPh, Croset M (1982) Thin Solid State Electrochemical Gas Sensors, Sensors and Actuators 2:371–384

    Article  CAS  Google Scholar 

  49. Igarashi I (1985) New Technologies of Automotive Sensors Digest of Technical Papers. Int Conf Solid State Sensors and Actuators. Transducers 85 IEEE (Library of Congress 84–62799) p 246–249

    Google Scholar 

  50. Isenberg AO (1984) Sensor cell structure for oxygen combustible gas mixture sensor, US-Patent Specification 4428817

    Google Scholar 

  51. Velasco GV, Schnell JPh (1983) Gas sensors and their applications in the automotive industry, J Phys E: Sei Instrum 16:973–977

    Article  CAS  Google Scholar 

  52. Kocache RMA, Swan J, Holman DF (1984) A miniature rugged and accurate solid electrolyte oxygen sensor. J Phys E: Sei Instrum 17:379–387

    Google Scholar 

  53. Fouletier J, Mantel E, Kleitz M (1982) Performance characteristics of conventional oxygen gauges. Solid State Ionics 6:1–13

    Article  CAS  Google Scholar 

  54. Dueker H, Friese KH, Haeker WD (1975) Ceramic aspects of the Bosch Lambda sensor. SAE-Paper 750223, SAE-Automotive Engineering Congress, Detroit, USA, pp 807–824

    Google Scholar 

  55. Wiedenmann HM (1986) Aufbau und Funktion von Lambda-Sonden für mageres Abgas. VDI-Berichte 578, 129

    Google Scholar 

  56. Gauthier M, Chamberland A (1977) Solid-state detectors for the Potentiometrie determination of gaseous oxides. I. Measurements in air. J Electrochem Soc 124:1579–1583

    CAS  Google Scholar 

  57. Logothetis EM, Kaiser J (1983) Ti02 Film Oxygen Sensors made by Chemical Vapour Deposition from Organometallics. Sensors and Actuators 4:333–340

    Article  CAS  Google Scholar 

  58. Franx C (1985) A Dynamic Oxygen Sensor With Zero Temperature Coeffizient. Sensors and Actuators 7:263–270

    Article  CAS  Google Scholar 

  59. Takeuchi T (1988) Oxygen Sensors. Sensors and Actuators 14:109–124

    Article  CAS  Google Scholar 

  60. Mari CM, Barbi GB. Solid Electrolyte Potentiometrie Oxygen Gas Sensors, in [6], S 99–110

    Google Scholar 

  61. Fouletier J (1982/83) Gas Analysis with Potentiometrie Sensors. A Review’, Sensors and Actuators 3:295–314

    Google Scholar 

  62. Hötzel G, Weppener W (1986) Potentionmetric Gas Sensors Based on Fast Solid Electrolytes, in: Proc. 2 nd Int Meet Chem Sens, Bordeaux 285

    Google Scholar 

  63. Gauthier M, Chamberland A, Belanger A, Poirier M (1977) Solid-state detectors for the Potentiometrie determination of gaseous oxides. II. Measurements in oxygen-variable gases in the S02, S03, 02, Pt/SOj” system. J Electrochem Soc 124:1584–1587

    Article  CAS  Google Scholar 

  64. Gauthier M, Bellemare R, Belanger A (1981) Progress in the development of solid—state sulfate detectors for sulfur oxides. J Electrochem Soc 128:371–378

    Article  CAS  Google Scholar 

  65. Pelloux A, Fabry P, Durante P (1985) Design and Testing of a Potentiometrie Chlorine Gauge. Sensors and Actuators 7:245–252

    Article  CAS  Google Scholar 

  66. Möbius H -H. Solid State Electrochemical Potentiometrie Sensors for Gas Analysis, in [4], Chapter 25, S 1105–1154

    Google Scholar 

  67. Akila R, Jacob KT (1989) An SOx (x= 2, 3) Sensor Using ß-Alumina/Na2S04 Couple’. Sensors and Actuators 16:311–323

    Article  CAS  Google Scholar 

  68. Hötzel G, Weppner W (1989) Application of Fast Ionic Conductors in Solid Galvanic Cells for Gas Sensors. Solid State Ionics 18 & 19:1223

    Google Scholar 

  69. Gerblinger J, Haerdtl KH, Meixner H, Aigner R (1995) High-Temperature Microsensors, Chapter 6, S 182–219, in: Sensors-A comprehensive Survey (eds: Göpel W, Hesse J, Zemel JN) Vol 8: Micro-and Nanosensor-Technology/Trends in sensor Markets (Vol eds: Meixner H, Jones R) VCH Verlagsgesellschaft mbH, s. [127] Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  70. Yu C, Shimizu Y, Arai H (1988) Mg-doped SrTi03 as a lean-burn oxygen sensor. Sensors and Actuators 14:309–318

    Google Scholar 

  71. Shimizu Y, Fukuyama Y, Yu C, Arai H (1988) A lean-burn oxygen sensor consisting of a dual-disc semiconductor. Sensors and Actuators 14:319–330

    Article  CAS  Google Scholar 

  72. Shimizu Y, Fukuyama Y, Arai H (1985) Application of a dual-disc semiconductor to a lean-burn oxygen sensor. Chem Lett 1831–1834

    Google Scholar 

  73. Yu C, Shimizu Y, Arai H (1986) Investigation on a lean-burn oxygen sensor using perovskite-type oxides. Chem Lett 563–566

    Google Scholar 

  74. Logothetis EM, Park K, Meitzler AH, Laud KR (1975) Oxygen sensor using CoO ceramics. Appi Phys Lett 26:209–211

    Article  CAS  Google Scholar 

  75. Park K, Logothetis EM (1977) Oxygen sensor with CoUxMgxO ceramics. J Electrochem Soc 124:1443–1446

    Google Scholar 

  76. Fukuyama Y, Yu C, Shimizu Y, Arai H, Seiyama T (1985) Application of Peroskite-type oxides to a lean-burn oxygen sensor. Proc. 5 th Sensor Symp, Japan, pp 139–142

    Google Scholar 

  77. Shimizu Y, Fukuyama Y, Narikiyo T, Arai H, Seiyama T (1985) Perovskite-type oxides having semiconductivity as oxygen sensors. Chem Lett 377–380

    Google Scholar 

  78. Tien TY, Stadler HL, Gibbons EF, Zacmanidis (1975) PJ Ti02 as an air-to fuel ratio sensor for automobile exhausts. Ceram Bull 54:280–283

    Google Scholar 

  79. Lampe U, Fleischer M, Meixner H (1994) Lambda measurement with Ga203. Sensors and Actuators B 17:187–196

    Article  CAS  Google Scholar 

  80. Fleischer M, Meixner H (1992) Oxygen sensing with long-term stable Ga203 thin films. Sensors and Actuators B 5:115

    Article  Google Scholar 

  81. Gerblinger J, Lampe U, Meixner H, Perczel IV, Giber J (1994) Cross sensitivity of various doped strontium titanate films to CO, C02, H?, H20 and CH4. Sensors and Actuators B 18–19:529–534

    Article  Google Scholar 

  82. Gerblinger J, Lohwasser W, Lampe U, Meixner H (1995) High temperature oxygen sensor based on sputtered cerium oxide, Sensors and Actuators B 26–27:93–96

    Article  Google Scholar 

  83. Lampe U, Gerblinger J, Meixner H (1995) Nitrogen oxide sensors based on thin films of BaSn03. Sensors and Actuators B 26–27:97–98

    Google Scholar 

  84. Fleischer M, Meixner H (1995) Sensitive, selective and stable CH4 detection using semi-conducting Ga203 thin films. Sensors and Actuators B 26–27: 81–84

    Article  Google Scholar 

  85. Taguchi N. Japan Patent 45–38200 (applied in 1962)

    Google Scholar 

  86. SeiyamaT, Kato A, Fujiishi K, Nagatani M (1962) Anal Chem 34:1502

    Google Scholar 

  87. Shaver PJ (1967) Activated tungsten oxide gas detectors. Appi Phys Lett 11 (8): 255–257

    Article  CAS  Google Scholar 

  88. Loh JC. Japan Patent 43–28560, Fr. 1545292 (applied in 1967)

    Google Scholar 

  89. Chiba A. Development of the TGS Gas Sensor, in: [7], Chapter 1, pp 1–18

    Google Scholar 

  90. Yamazoe N, Miura N. Some Basic Aspects of Semiconductor Gas Sensors, in: [7], Chapter 2, pp 19–41

    Google Scholar 

  91. Jones TA. Characterisation of Semiconductor Gas Sensors, in: [35], Chapter 4, pp 51–70

    Google Scholar 

  92. Williams DE. Conduction and Gas Response of Semiconductor Gas Sensors, in: [35], Chapter 5, pp 71–123

    Google Scholar 

  93. Morrison SR (1982) Semiconductor Gas Sensors. Sensors and Actuators 2:329–341

    Article  CAS  Google Scholar 

  94. Heiland G (1982) Homogeneous Semiconducting Gas Sensors. Sensors and Actuators 2:343–361

    Article  CAS  Google Scholar 

  95. Yamazoe N, Krakowa Y, Seiyama T (1983) Effects of Additives on Semiconductor Gas Sensors. Sensors and Actuators 4:283

    Article  CAS  Google Scholar 

  96. Willett ML Spectroscopy of Surface Reactions, in: [10], Chapter 3, pp 61–107

    Google Scholar 

  97. Matsushima S, Teraoka Y, Miura N, Yamazoe N (1988) Electronic interaction between metal additves and tin dioxide in tin dioxide-based gas sensors. Jpn J Appi Phys 27:1798–1802

    Article  CAS  Google Scholar 

  98. Nita M, Kanefusa S, Ohtani S, Haradome M (1979) Oscillation waveforms of tin (IV) oxide-based thick film carbon monoxide sensor. J Electrochem Soc 126:627–633

    Article  Google Scholar 

  99. Windischmann H, Mark P (1979) A model for the operation of a thin-film tin oxide (SnOx) conductance-modulation carbon monoxide sensor. J Electrochem Soc 126:627–633

    Google Scholar 

  100. Tamaki J. Chemical sensors 1993/1994: Semiconductor gas sensor. Chem Sens 1994, 10 (4): 138–143, Combustible gas sensors, Chem Sens 1994, 10 (4), 133–137

    Google Scholar 

  101. Tamaki J. Chemical sensors 1992: Semiconductor gas senso’, Chem Sens 1993, 9 (4): 137–142. Combustible gas sensors, Chem Sens 1993, 9 (4): 133–136

    Google Scholar 

  102. Göpel W, Schierbaum K -D Electronic Conductance and Capacitance Sensors, in [3], Chapter 9, S 430–466

    Google Scholar 

  103. Jones E. The Pellistor Catalytic Gas Detector, in [35], Chapter 2, S 17–31

    Google Scholar 

  104. Symons EA. Catalytic Gas Sensors, in: [9], S 169–186

    Google Scholar 

  105. Jones TA, Walsh, PT. Calorimetrie Chemical Sensors, in: [3], Chapter 11, S 529–563

    Google Scholar 

  106. Gentry SJ, Walsh PT. The Theory of Poisoning of Catalytic Flammable Gas—Sensing Elements, in: [35], Chapter 3, S 32–50

    Google Scholar 

  107. Gentry SJ (1988) Catalyric Devices, in: Chemical Sensors (ed: Edmonds TE), Blackie, Glasgow, London

    Google Scholar 

  108. Gentry SJ, Jones TA (1983) A Comparison of Metal Oxide Semiconductor and Catalytic Gas Sensors. Sensors and Actuators 4:581–586

    Article  CAS  Google Scholar 

  109. Gentry SJ, Walsh PT (1984) Poison-Resistant Catalytic Flammable-Gas Sensing Elements. Sensors and Actuators 5:239–251

    Article  CAS  Google Scholar 

  110. Gentry SJ, Jones TA (1986) The Role of Catalysis in Solid-State Gas Sensors. Sensors and Actuators 10:141–163

    Article  CAS  Google Scholar 

  111. Dabill DW, Gentry SJ, Walsh PT (1987) A Fast-Response Catalytic Sensor For Flammable Gases. Sensors and Actuators 11:135–143

    Article  CAS  Google Scholar 

  112. Marcinkowska K, McGauley MP, Symons E A (1991) A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst. Sensors and Actuators B 5:91–96

    Article  Google Scholar 

  113. Sommer V, Rongen R, Tobias P, Kohl D (1992) Detection of methane/butane mixtures in air by a set of two microcalorimetric sensors. Sensors and Actuators B 6:262–265

    Article  Google Scholar 

  114. Sommer V, Tobias P, Kohl D (1993) Methane and butane concentrations in a mixture with air determined by microcalorimetric sensors and neural networks. Sensors and Actuators B 12:147–152

    Article  CAS  Google Scholar 

  115. Futata H. Miniaturisation of Catalytic Combustion Sensors, in: [7], pp 85–97

    Google Scholar 

  116. Oehme F, Schuler P (1983) Gelöst-Sauerstoff-Messung: physikal. Grundlagen; Meß- und Analysentechnik, Anwendungen. Hüthig, Heidelberg

    Google Scholar 

  117. Oehme F. Liquid Electrolyte Sensors: Potentiometry, Amperometry, and Conductometry, in [2], Chapter 7.1.6, S 285–340

    Google Scholar 

  118. Schweizer Patent 364 916, Erf. Clark LC Anmeldung 31.8.1957

    Google Scholar 

  119. Mancy KH, Westgarth WC (1962) Journ Water Poll Contri Fed 34:1037

    CAS  Google Scholar 

  120. Brunei JE, Gardiazabal JI, Schrebler R (1981) Design of an oxygen monitor for laboratory tests. Quirn Nova 4:5–6

    Google Scholar 

  121. Brunei JE, Gardiazabal JI, Schrebler R (1983) An inexpensive electrode and cell for measurement of oxygen uptake in chemical and biochamical systems. J Chem Educ 60: 677–678

    Article  Google Scholar 

  122. Evans J, Pletcher D (1989) Amperometric sensor for carbon dioxide: design, characteristics, and performance. Anal Chem 61:577–580

    Article  CAS  Google Scholar 

  123. Albery WJ, Barron P (1982) A membrane electrode for the determination of C02 and 02. J Electroanal Chem 138:79–87

    Article  CAS  Google Scholar 

  124. Severinghaus W, Bradley AF (1958) Journ Appi Physiol 13:515

    CAS  Google Scholar 

  125. Ruzika J, Hansen E (1974) Anal Chim Acta 69:129

    Article  Google Scholar 

  126. Hara H, Okabe Y, Kotagawa T (1992) Flow determination of dissolved inorganic carbon using the alternate washing system equipped with a Potentiometrie gas electrode. Anal Chem 64 (20): 2393–2397

    Article  CAS  Google Scholar 

  127. Sensors-A comprehensive Survey (1995) (eds Göpel W, Hesse J, Zemel JN) Vol 8: Micro—and Nanosensor-Technology/Trends in Sensor Markets (Vol eds Meixner H, Jones R) VCH VerlagsG1894 gesellschaft mbH, Weinheim, New York, Basel, Cambridge, Tokyo

    Google Scholar 

  128. Smith RL, Collins SC. Sensor Design and Packaging, in [2], Chapter 4, S 79–106

    Google Scholar 

  129. Chang S -C, Ko WH. Thin and Thick Films, in [2], Chapter 4, S 79–106

    Google Scholar 

  130. Ko WH, Suminto JT. Semiconductor Integrated Circuit Technology and Micromachining, in [2], Chapter 5, S 108–168

    Google Scholar 

  131. Büttgenbach S (1991) Mikromechanik. Teubner, Stuttgart, S 39

    Google Scholar 

  132. Heuberger A (1991) (Hrsg) Mikromechanik. Springer-Verlag, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona

    Google Scholar 

  133. Chemical sensors and microinstrumentation (ACS symposium series 403, Murray RW, Dessy RE, Heineman WR, Janata J, Seitz WR) American Chemical Society, Washington, DC 1989

    Google Scholar 

  134. Prudenziati M (1994) (eds); Handbook of Sensors and Actuators 1-Thick Film Sensors, from Series: Handbook of Sensors and Actuators (Middelhoek S, series ed) Elsevier, Amsterdam, Lausanne; New York, Oxford, Shannon, Tokyo

    Google Scholar 

  135. Liu CC, Zhang Z (1992) Research and development of chemical sensors using micro-fabrication techniques. Sel Electrode Rev 14:147–167

    CAS  Google Scholar 

  136. MST Infobörse, Intelligente Gassensoren. Informationsreihe der VDI/VDE-Technologiezentrum Informationstechnik GmbH, Nr 8–1995, Förderung durch das BMBF

    Google Scholar 

  137. Lambeck PV (1992) Integrated opto-chemical sensors, Sensors and Actuators B 8:103–116

    Article  Google Scholar 

  138. Van den Berg A, Koudelka -Hep M, Van den Schot BH, De Rooij NF, Verney -Norberg E, Grisel A (1992) Silicon-based chlorine sensor with on-wafer deposited chemically anchored diffusion membrane. Part I. Basic sensor concept. Anal Chim Acta 269 (1): 75–82

    Google Scholar 

  139. Enderlein R (1993) Mikroelektronik; eine allgemeinverständliche Einführung in die Welt der Mikrochips, ihre Funktionen, Herstellung und Anwendung. Spektrum Akad, Heidelberg, Berlin, Oxford

    Google Scholar 

  140. Meyer H, Drewer H, Gründig B, Cammann K, Kakerow R, Manoli Y, Mokwa W, Rospert M (1995) Two-Dimensional Imaging of 02, H202, and Glucose Distributions by an Array of 400 Individually Addressable Microelectrodes. Anal Chem 67, 1164–1170

    Article  CAS  Google Scholar 

  141. Wolfbeis O, Boisde GE, Gauglitz G. Optochemical Sensors, in: [2], Chapter 12, S 573–645

    Google Scholar 

  142. Gauglitz G, Brecht A, Ingenhoff J, Kraus G (1994) Optische Chemo-und Biosensoren für die Umwelt-und Bioanalytik, Spektrum der Wissenschaft

    Google Scholar 

  143. Fiber Optic Chemical Sensors and Biosensors (1991) (ed Wolfbeis OS) Vol I and II, CRC Press, Boca Raton, FL

    Google Scholar 

  144. Syms R, Cozens J (1992) Optical Guided Waves and Devices. Mc Graw Hill, London

    Google Scholar 

  145. Norris JOW Optical Fibre Gas Sensing, in [9], Chapter 11, pp 260–280

    Google Scholar 

  146. Sensoren Schaumburg H (Hrsg) Teubner, Stuttgart 1992, Kap 6, Optische Sensoren; S 307–373

    Google Scholar 

  147. Seitz WR (1984) Chemical sensors based on fiber optics. Anal Chem 56, 16 A

    Google Scholar 

  148. Arnold MA, Ostler TJ (1986) Fiber Optic ammonia gas sensing probe. Anal Chem 58: 1137–1140

    Google Scholar 

  149. Wolfbeis OS, Posch HE (1986) Fibre-optic fluorosensor for ammonia. Anal Chim Acta 185:321–327

    Article  CAS  Google Scholar 

  150. Opitz N, Graf H -J, Lubbers DW (1988) Oxygen Sensor for the Temperature Range 300 to 500 K Based on Fluorescence Quenching of Indicator-Treated Silicone Rubber Membranes. Sensors and Actuators 13:159–163

    Article  CAS  Google Scholar 

  151. Posch HE, Wolfbeis OS (1988) Fibre-Optic Humidity Sensor Based on Flurorescence Quenching. Sensors and Actuators 15:77–83

    Article  CAS  Google Scholar 

  152. Wolfbeis OS, Posch HE, Kroneis HW (1985) Fiber optical fluorosensor for the determination of halothane and or oxygen. Anal Chem 57:2556–2561

    Article  CAS  Google Scholar 

  153. Posch HE, Wolfbeis OS, Pusterhofer J (1988) Optic and fibre-optic sensors for vapours of polar solvents. Talanta 35:89–94

    Article  CAS  Google Scholar 

  154. Lieberman RA (1991) Intrinsic fiber optic chemical sensors, in: Fiber Optic Chemical sensors and Biosensors (ed Wolfbeis OS) Boca Raton, Vol 1, S 193, 235

    Google Scholar 

  155. Lieberman RA (1991) Recent progress in intrinsic fiberoptic chemical sensing. Proc SPIE-Int Soc Opt Eng (Chem Biochem Environ Fiber Sens 2) 15–24

    Google Scholar 

  156. Lieberman RA (1993) Recent progress in intrinsic fiber-optic chemical sensing II, Sensors and Actuators B 11:43–55

    Article  Google Scholar 

  157. Lieberman RA, Blyler LL, Cohen L (1990) A distributed fiber optic sensor based on cladding fluorescence, IEEE J Lightwave Technol LT -8 (2): 212

    Google Scholar 

  158. Blyler LL, Lieberman RA, Cohen LG, Ferrara JA, MacChesney JB (1989) Optical fiber chemical sensors utilizing dye-doped silicone polymer claddings. Polymer Eng Sci 29 (17): 1215

    Article  CAS  Google Scholar 

  159. Blyler LL, LG, Ferrara JA, MacChesney JB (1988) A plastic clad silica fiber chemical sensor. Proc Int Conf Opt Fib Commun/Opt Fib Sensors (OFC/OFS 88), Opt Soc Am, p 369

    Google Scholar 

  160. Shahriari MR, Zhou Q, Sigei GH (1988) Porous optical fibers for high-sensitivity ammonia-vapor sensors. Opt Lett 13 (5): 407

    Article  CAS  Google Scholar 

  161. Zhou Q, Sigel GH (1989) Detection of carbon monoxide with a porous polymer optical fibre, Int J Optoelectron 4 (5): 415–523

    Google Scholar 

  162. Muto S, Fukasawa T, Ogawa M, Morisawa M, Ito H (1990) Breathing monitor using dyedoped optical fiber. Jpn J Appi Phys 29 (8): 1618–1619

    Article  CAS  Google Scholar 

  163. Muto S, Ando A, Ochiai T, Ito H, Sawada H, Tanaka (1989) A Simple gas sensor using dyedoped plastic fibers. Jpn J Appi Phys, Part 1, 28:125–127

    Google Scholar 

  164. MacCraith BD (1992) Chemical sensing using evanescent waves on optical fibers. 1st European Conf. Optical Chemical Sensors and Biosensors, Europt(r)ode, 1, Graz, Austria, April 12–15

    Google Scholar 

  165. Stewart G, Muhammad FA, Culshaw B (1993) Sensitivity improvement for evanescent-wave gas sensors. Sensors and Actuators B 11:521–524

    Article  Google Scholar 

  166. Frishman G, Gabor G (1994) Surface characteristics of optical chemical sensors. Sensors and Actuators B 17:227–232

    Article  CAS  Google Scholar 

  167. Giuliani J, Wohltjen H, Jarvis N (1983) Reversible optical waveguide sensor for ammonia vapors. Opt Lett 8:54

    Article  CAS  Google Scholar 

  168. Farahi F, Akhavan Leilabady P, Jones DC, Jackson DA (1987) Optical-fibre flammable gas sensor. J Phys E: Sei Instrum 20:435

    Article  CAS  Google Scholar 

  169. Arai H, Eguchi K, Hashiguchi T (1992) Chem Lett 1988, 521. Hydrogen detection basec on coloration of anodic tungsten oxide film. Appi Phys Lett 60:938–940

    Google Scholar 

  170. Gauglitz G, Brecht A, Kraus G (1995) Interferometric biochemical and chemical sensors. Proc SPIE-Int Soc Opt Eng 2508 (Chemical, Biochemical, and Environmental Fiber Sensors VIII) 41–48

    Google Scholar 

  171. Seemann J, Kraus G, Gauglitz G (1995) Online monitoring of volatile organic compounds with multiplexed reflectometric sensors. Proc SPIE-Int Soc Opt Eng 2507:106–112

    CAS  Google Scholar 

  172. Gauglitz G (1995) Interferometric and evanescent-field sensors. Nachr Chem Tech Lab 43: 316–318

    Article  CAS  Google Scholar 

  173. Brandenburg A, Gombert A (1993) Grating couplers as chemical sensors: a new optical configuration. Sensors and Actuators B 17:35–40

    Article  CAS  Google Scholar 

  174. Tiefenthaler K, Lukosz W (1984) Integrated optical switches and gas sensors Opt Lett 9:137–139

    CAS  Google Scholar 

  175. Tiefenthaler K, Lukosz W (1984) Integrated optical humidity and gas sensors. Proc SPIE-Int Soc Opt Eng, 514 (Conf Proc OFS ’;84, Int Conf Opt Fiber Sens, 2nd) 215–218

    Google Scholar 

  176. Tiefenthaler K, Lukosz W (1985) Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films 126:205–211

    Article  CAS  Google Scholar 

  177. Tiefenthaler K, Lukosz W (1989) Sensitivity of Grating couplers as integrated optical chemical sensors. J Opt Soc Am B: Opt Phys 6:209–220

    Article  CAS  Google Scholar 

  178. Nylander C, Liedberg B, Lind T (1982/83) Gas Detection by Means of Surface Plasmon Resonance. Sensors and Actuators 3:79–88

    Google Scholar 

  179. Chadwick B, Tann J, Brungs M, Gal M (1994) A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sensors and Actuators B 17:215–220

    Article  CAS  Google Scholar 

  180. Zhang L, Uttamchandani (1988) Optical chemical sensing employing surface plasmon resonance, Electron Lett 24:1469–1470

    Google Scholar 

  181. Jory MJ, Vukusic PS, Sambles JR (1994) Development of a prototype gas sensor using surface plasmon resonance on gratings. Sensors and Actuators B 17:203–209

    Article  CAS  Google Scholar 

  182. Vukusic PS, Bryan -Brown GP, Sambles JR (1992) Surface plasmon resonance on gratings as a novel means for gas sensing. Sensors and Actuators B 8:155–160

    Google Scholar 

  183. Niggemann M, Katerkamp A, Pellmann M, Bolsmann P, Reinbold J, Cammann K (1995) Intrinsic fibre optical gas sensor based on surface plasmon resonance spectroscopy. Spie-The International Society for Optical Engineering, Conf Proc SPIE Vol 2508, 303–311

    Article  CAS  Google Scholar 

  184. Niggemann M, Katerkamp A, Pellmann M, Bolsmann P, Reinbold J, Cammann K (1996) Remote sensing of tetrachloroethylene with a microfibre optical gas sensor based on surface plasmon resonance spectroscopy. Sensors and Actuators B 34: 328–333

    Article  Google Scholar 

  185. Harris RD, Wilkinson JS (1995) Waveguide surface plasmon resonance sensors. Sensors and Actuators B 29:261–267

    Article  Google Scholar 

  186. Van Ewyk R, Willatt BM. Infrared Gas Detection, in [9], Chapter 10, pp 234–259

    Google Scholar 

  187. Edwards HO, Dakin JP (1993) Gas Sensors Using Correlation Spectroscopy Compatible with Fibre-Optic Operation. Sensors and Actuators B 11:9–19

    Article  Google Scholar 

  188. Stuart AD (1993) Some Applications of Infrared Optical Sensing. Sensors and Actuators B 11:185–193

    Article  Google Scholar 

  189. De Frutos J, Rodriguez JM, Lopez F, De Castro AJ, Melendez J, Meneses J (1994) Electro—optical infrared compact gas sensor. Sensors and Actuators B 18–19:682–686

    Article  Google Scholar 

  190. Mizaikoff B, Göbel R, Krska R, Taga K, Kellner R, Tacke M, Katzir A (1995) Infrared fiber-optical chemical sensors with reactive surface coatings. Sensors and Actuators B 29:58–63

    Article  Google Scholar 

  191. Schierbaum K (1994) Application of organic supramolecular and polymeric compounds for chemical sensors. Sensors and Actuators B 18–19:71–76

    Article  Google Scholar 

  192. McGill RA, Abraham MH, Grate JW (1994) Choosing plymers coatings for chemical sensors. Chemtech 24:27–37

    CAS  Google Scholar 

  193. Amati D, Arn D, Blom N, Ehrat M, Saunois J, Widmer HM (1992) Sensitivity and selectivity of surface acoustic wave sensors for organic solvent vapour detection. Sensors and Actuators B 7:587–591

    Article  Google Scholar 

  194. Elmosalamy MAF, Moody GJ, Thomas GDR, Kohnke FA, Stoddart JF (1989) Studies on Two Epoxyoctacosahydro[12]cyclaene Derivatives as Sensor Coatings on Quartz Piezoelectric Crystals for Detecting Aromatic Vapours. Analytical Proceedings, London 26:12–15

    CAS  Google Scholar 

  195. Ehlen A, Wimmer C, Werber E, Bargon J (1993) Organic Clathrates as Sensor Coatings for Gravimetric Detection of VOC’s. Angew Chem Int Ed Engl 32:110–112; Angew Chem 105: 116:117

    Google Scholar 

  196. Reinbold J, Buhlmann K, Cammann K, Wierig A, Wimmer C, Weber E (1994) Inclusion of organic solvent vapours by crystalline hosts. Chemical-sensitive coatings for sensor applications. Sensors and Actuators B 18–19:77–81

    Google Scholar 

  197. Alberti K, Haas J, Plog C, Fetting F (1991) Zeolithe coated interdigital capacitors as a new type of gas sensor. Catal Today 8 (4): 509–513

    Article  CAS  Google Scholar 

  198. Alberti K, Fetting F (1994) Zeolithes as sensitive materials for dielectric gas sensors. Sensors and Actuators B 21:39–50

    Article  CAS  Google Scholar 

  199. Fujii S, Fujii T, Hamada Y, Kuroki K. Gas sensors. Patent JP 90–46237 900227

    Google Scholar 

  200. Yamaguchi H, Enmanji K, Nishama I, Takahashi K. Sensors for gases with odors, Patent JP 91–62966 910327

    Google Scholar 

  201. Ide J, Nakamoto T, Moriizumi T (1995) Discrimination of aromatic optical isomers using quartz-resonator sensor. Sensors and Actuators A 49:73–78

    Article  Google Scholar 

  202. Nieuwenhuizen MS, Barendsz AW (1987) Processes involved at the chemical interface of a SAW chemosensor. Sensors and Actuators 11:45–62

    Article  CAS  Google Scholar 

  203. Haug M, Schierbaum KD, Gauglitz G, Göpel W (1993) Chemical sensors based upon polysiloxanes: comparison between optical, quartz microbalance, calorimetrie, and capacitance sensors. Sensors and Actuators B 11:383–391

    Article  Google Scholar 

  204. Nieuwenhuizen MS, Nederlof AJ (1988) Surface acoustic wave gas sensor for nitrogen dioxide using phthalocyanines as chemical interfaces. Effects of nitric oxide, halogen gases and prolonged heat treatment. Anal Chem 60:236–240

    Article  CAS  Google Scholar 

  205. Grate JW, Patrash SJ, Abraham MH, Chau MD (1996) Selective Vapor Sorption by Polymers and Cavitands on Acoustic Wave Sensors: Is This Molecular Recognition? Anal Chem 68: 913–917

    Article  CAS  Google Scholar 

  206. Nieveld GD (1982/83) Thermopiles Fabricated using Silicon Planar Technology. Sensors and Actuators 3:179–183

    Google Scholar 

  207. Gardner JW, Pike A, de Rooij NF, Koudelka -Hep M, Clerc PA, Hierlemann A, Göpel W (1995) Integrated array sensor for detecting organic solvents. Sensors and Actuators B26:135–139

    Google Scholar 

  208. Lerchner J, Seidel J, Wolf G (1996) Calorimetrie Detection of Organic Vapours using Inclusion Reaktions with Organic Coating Materials. Sensors and Actuators, in press

    Google Scholar 

  209. Bort B, Jones TA (1984) A Highly Sensitive N02-Sensor Based on Electrical Conductivity Changes in Phthalocyanine Films. Sensors and Actuators 4:43–53

    Google Scholar 

  210. Mockert H, Schmeisser D, Göpel W (1989) Lead Phthalocyanine as Prototype Organic Material for Gas Sensors: Comparative Electrical and Spectroscopic Studies to Optimize 02 and N02 Sensing. Sensors and Actuators 19:159

    Article  CAS  Google Scholar 

  211. Sadaoka Y, Jones TA, Reveil GS, Göpel W (1990) Effects of Morphology on N02 Detection in Air at Room Temperature with Phthalocyanine Thin Films. J Material Science 25:5267–5268

    Google Scholar 

  212. Sadaoka Y. Organic Semiconductor Gas Sensors, in [8], pp 187–218

    Google Scholar 

  213. Meier H (1974) Organic Semiconductors. Verlag Chemie, Weinheim

    Google Scholar 

  214. Wright JD, Chadwick AV, Meadows B, Miasik JJ (1983) Chemical and structural influences on effects of adsorbed gases on semiconductivity organic films, Mol Cryst Liq Cryst 93:315–325

    Article  CAS  Google Scholar 

  215. Archer PBM, Chadwick AV, Miasik JJ, Tamizi M, Wright JD (1989) Kinetic Factors in the Response of Organometallic Semiconductor Gas Sensors. Sensors and Actuators 16:379–392

    Article  CAS  Google Scholar 

  216. Gentry SJ, Walsh PT (1986) The detection of chlorinated hydrocarbons using lead phthalocyanine films, Proc. 2nd Int Meet on Chem Sensors. Bordeaux, July 7–10, pp 209–212

    Google Scholar 

  217. Kaufhold J, Hauffe K (1965) Über das Leitfähigkeitsverhalten verschiedener Phthalocyanine im Vakuum und unter dem Einfluß von Gasen. Ber Bunsenges Phys Chem 69:168

    CAS  Google Scholar 

  218. Endres H -E (1989) Kapazitive Gassensoren mit sensitiven Schichten aus Heteropolysiloxanen. Dissertation, München

    Google Scholar 

  219. Haug M, Schierbaum K -D, Endres HE, Drost S, Göpel W (1992) Controlled selctivity of polysiloxane coatings: their use in capacitance sensors. Sensors and Actuators A 32:326–332

    Article  Google Scholar 

  220. Endres H -E, Drost S, Hutter F (1990) Impedance spectroscopy on dielectric gas sensors. Proc 3rd Int Meet Chemical Sensors, Cleveland, OH, USA, Sept 24–26

    Google Scholar 

  221. Barker PS, Chen JR, Agbor NE, Monkman AP, Mars P, Petty MC (1994) Vapour recognition using organic films and artivicial neural networks. Sensors and Actuators B 17:143–147

    Article  CAS  Google Scholar 

  222. Lacquet BM, Swart PL (1993) A new electrical model for porous dielectric humidity sensors. Sensors and Actuators B 17:41–46

    Article  Google Scholar 

  223. Buhlmann K, Reinbold J, Cammann K, Shul’ga AA, Sundermeier C, Knoll M, Wierig A, Weber E (1995) Clathrates as coating materials for dielectric transducers with regard to organic solvent vapours. Sensors and Actuators B 26–27:158–161

    Article  Google Scholar 

  224. Nieuwenhuizen MS, Venema A. Mass –Sensitive Devices, in: [3], Chapter 13, pp 652–680

    Google Scholar 

  225. Reinbold J. Mass Sensitive Devices; in: [5], Chapter 2.2.3, pp 166–186

    Google Scholar 

  226. Bastiaans GJ (1992) Piezoelectric Biosensors; in [7]: Chemical Sensor Technology (ed: S Yamauchi), Elsevier, pp 181–204

    Google Scholar 

  227. Janata J (1989) Mass sensors; in [8]; Chapter 3, pp 55–80, Plenum Press, New York and London

    Google Scholar 

  228. Fischerauer G, Mauder A, Müller R. Acoustic Wave Devices; Ch. 6 in [127], pp 134–180

    Google Scholar 

  229. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  230. Guibault GG (1984) Applications of Quartz Crystal Microbalances in Analytical Chemistry; Chapter 8 in: Methods and Phenomena, Vol 7, Applications of Piezoelectric Quartz Crystal Microbalances (C Lu and AW Czanderna,) Elsevier 1984, pp 251–280

    Google Scholar 

  231. King Jr WH (1964) Piezoelectric Sorption Detector. Anal Chem 36:1735–1739

    Article  CAS  Google Scholar 

  232. King Jr WH (1965) US Patent 3 164 004

    Google Scholar 

  233. Thompson M, Kipling AL, Duncan -Hewitt WC, Rajakovic LV, Cavic -Vlasak, B (1991) A ’Thickness-shear-mode acoustic wave sensors in the liquid phase’. Analyst 116: (1991) 881–890

    Google Scholar 

  234. Kindlund A, Sundgren H, Lundström I (1984) ’Quartz crystal gas monitor with a gas concentrating stage’. Sensors and Acutators 6:1–17

    Article  CAS  Google Scholar 

  235. Kindlund A, Lundström I (1982/83) Physical Studies of quartz Crystal Sorption Detectors. Sensors and Actuators 3:63–77

    Google Scholar 

  236. Fox CG, Alder JF (1991) Surface Acoustic Wave Sensors for Atmospheric Gas Monitoring, Ch. 13, in: Techniques and Mechanism in Gas Sensing (eds. Moseley PT, Jorris J, De Williams) Adam Hilger, Bristol, Philadelphia, New York

    Google Scholar 

  237. Byrant A, Poirier M, Riley G, Lee, DL, Vetelino JF (1983) Gas detectin using surface acoustic wave delay lines. Sensors and Actuators 4:105–111

    Article  Google Scholar 

  238. Bryant A, Lee DL, Vetelino JF (1981) Proc IEEE Ultrasonics Symp, Chicago; New York: IEEE, pp 171–174

    Google Scholar 

  239. Damico A, Palma A, Verona E (1982/83) Surface Acoustic Wave Hydrogen Sensor. Sensors and Actuators 3:31–39

    Google Scholar 

  240. Nieuwenhuizen MS, Nederlof AJ, Vellekoop MJ, Venema A (1989) Preliminary results with a silicon-based surface acoustic wave chemical sensor for nitrogen dioxide. Sensors and Actuators 19:385–392

    Article  CAS  Google Scholar 

  241. Wohltjen H (1984) Mechanism of operation and design considerations for surface acoustic wave device vapor sensors. Sensors and Actuators 5:307–325

    Article  CAS  Google Scholar 

  242. Nieuwenhuizen MS, Nederlof AJ, Barendsz AW (1988) Metallophthalocyanines as chemical interfaces on a surface acoustic wave gas sensor for nitrogen dioxide. Anal Chem 60:230–235

    Article  CAS  Google Scholar 

  243. Von Schickfus M, Stanzel R, Kammereck T, Weiskat D, Dittrich W (1994) Improving the SAW gas sensor: device, electronics and sensor layer. Sensors and Actuators B 18–19:443–447

    Article  Google Scholar 

  244. Chang CT, White RM (1982) Excitation and propagation of plate mode in an acoustically thin membrane. Proc IEEE Ultrasonics Symp, pp 295–298

    Google Scholar 

  245. White RM, Wicher PW, Wenzel SW, Zellers ET (1987) Plate-mode ultrasonic oscillator sensors. IEEE Trans Ultrason Dev Ferrelectr Freq Contr, UFFC–34:162–171

    Google Scholar 

  246. Gisler TG, Meyer J -U (1992) Fachbeilage Mikroperipherik. Bd 6 XLVI

    Google Scholar 

  247. Rajendran V, Koike M, Hashimoto K, Yamaguchi M (1992) Lamb wave devices employing zinc oxide film/aluminium foil composite structure. Jpn J Appi Phys, Part 1, 31 (Suppl. 31–1), 216–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reinbold, J., Cammann, K. (1997). Chemosensoren für Gase und Lösungsmitteldämpfe. In: Günzler, H., et al. Analytiker-Taschenbuch. Analytiker-Taschenbuch, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60643-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60643-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64489-4

  • Online ISBN: 978-3-642-60643-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics