Skip to main content

Platelet G Proteins and Adenylyl and Guanylyl Cyclases

  • Chapter
Platelets and Their Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 126))

Abstract

Platelets are important constituents of hemostasis under normal and pathophysiological circumstances (Marcus and Safier 1993). Following injury, platelet aggregation helps prevent excessive blood loss and also plays an essential role in atherosclerosis and thrombosis, where it is implicated in the pathogenesis of life-threatening diseases, e.g., myocardial infarction and stroke. The hallmark of platelet function is aggregation that is regulated by an array of activating and inhibiting hormones and factors released by surrounding cells or from platelets themselves. Activators of platelets include enzymes such as the protease thrombin, lipid mediators such as platelet activating factor (PAF) and thromboxane A2 (TXA2), nucleotides (ADP), and various neurotransmitters, e.g., catecholamines (via (α 2-adrenoceptors) and serotonin. In contrast, platelet aggregation is inhibited by adenosine, prostaglandins, e.g., prostacyclin (PGI2), or catecholamines (via β-adrenoceptors). All these ligands bind to cell surface receptors exhibiting a high degree of structural homology regardless of whether or not these receptors elicit stimulating or inhibiting signals (Hourani and Cusack 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnert-Hilger G, Nürnberg B, Exner T et al. The heterotrimeric G-protein Gα o2 inhibits catecholamine uptake into secretory granules (submitted)

    Google Scholar 

  • Arkinstall, Chabert C, Maundrell K, Peitsch M (1995) Mapping regions of Gα q interacting with PLCβ 1 using multiple overlapping synthetic peptides. FEB S Lett 364:45–50

    Article  CAS  Google Scholar 

  • Behrends S, Harteneck C, Schultz G, Koesling D (1995) A variant of the α 2 subunit of soluble guanylyl cyclase contains an insert homologous to a region within adenylyl cyclases and functions as a dominant negative protein. J Biol Chem 270:21109–21113

    Article  PubMed  CAS  Google Scholar 

  • Bennett BM, McDonald BJ, Nigam R, Simon WC (1994) Biotransformation of organic nitrates and vascular smooth muscle cell function. Trends Pharmacol Sci 15:245–249

    Article  PubMed  CAS  Google Scholar 

  • Biel M, Altenhofer W, Hullin R, Ludwig J, Freichel M, Flockerzi V, Dascal N, Kaupp UB (1993) Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. FEBS Lett 329:134–138

    Article  PubMed  CAS  Google Scholar 

  • Biel M, Zong X, Distler M, Bosse E, Klugbauer N, Murakami M, Flockerzi V, Hofmann F (1994) A new member of the cyclic nucleotide-gated channel family expressed in testis, kidney, and heart. Proc Natl Acad Sci USA 91:3505–3509

    Article  PubMed  CAS  Google Scholar 

  • Biel M, Zong X, Hofmann F (1995) Molecular diversity of cyclic nucleotide-gated cation channels. Naunyn Schmiedebergs Arch Pharmacol 353:1–10

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for βγ dimers as well as α subunits. Cell 71:1069–1072

    Article  PubMed  CAS  Google Scholar 

  • Böhme E, Grossmann G, Herz J, Mülsch A, Spies C, Schultz G (1981) Regulation of cGMP formation by soluble guanylyl cyclase stimulation by NO-containing compounds. Adv Cyclic Nucleot Prot Phosphorylat Res 17:259–266

    Google Scholar 

  • Bourne HR (1995) Trimeric G proteins: surprise witness tells a tale. Science 270:933–934

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Nicoll R (1993) Molecular machines integrate coincident synaptic signals. Neuron [Suppl] 10:65–75

    Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 349:117–127

    Article  PubMed  CAS  Google Scholar 

  • Brandwein HJ, Lewicki JA, Murad F (1981) Reversible inactivation of guanylate cyclase by mixed disulfide formation. J Biol Chem 256:2958–2962

    PubMed  CAS  Google Scholar 

  • Brass LF, Manning DR, Shattil SJ (1990) GTP-binding proteins and platelet activation. Prog Hemost Thromb 127–175

    Google Scholar 

  • Brass LF, Hoxie JA, Kieber-Emmons T, Manning DR, Poncz M, Woolkalis M (1993) Agonist receptors and G proteins as mediators of platelet activation. In: Authi KS (ed) Mechanisms of platelet activation and control. Plenum, New York, pp 17–36

    Google Scholar 

  • Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    Article  PubMed  CAS  Google Scholar 

  • Brüne B, Ullrich V (1988) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32:497–504

    Google Scholar 

  • Brüne B, Schmidt KU, Ullrich V (1990) Activation of soluble guanylate cyclase by carbon monoxide and inhibition by superoxide anion. Eur J Biochem 192:683–686

    Article  PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: molecular basis for odorant recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  • Buechler WA, Nakane M, Murad F (1991) Expression of soluble guanylate cyclase activity requires both enzyme subunits. Biochem Biophys Res Commun 174:351–357

    Article  PubMed  CAS  Google Scholar 

  • Buhl AM, Johnson NL, Dhanesakaran N, Johnson GL (1995) Gα 12 and Gα 13 stimulate Rho-dependant stress fiber formation and focal adeshion assembly. J Biol Chem 270:24631–24634

    Article  PubMed  CAS  Google Scholar 

  • Butt E, Walter U (1995) Signal transduction by cyclic nucleotide-dependent protein kinases in platelets. In: Lapetina E (ed) The platelet. Advances in molecular and cell biology (in press)

    Google Scholar 

  • Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992) Osienzyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 360:684–686

    Article  PubMed  CAS  Google Scholar 

  • Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–158

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ (1994) Lipid modifications of G proteins. Curr Opin Cell Biol 6:219–225

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ, Fong HKW, Simon MI, Gilman AG (1990) Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 265:2383–2390

    PubMed  CAS  Google Scholar 

  • Cavallini L, Coassin L, Borean A, Alexandre A (1996) Prostacyclin und sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J Biol Chem 271:5545–5551

    Article  PubMed  CAS  Google Scholar 

  • Chan AML, Fleming TP, McGovern ES, Chedid M, Miki T, Aaronson SA (1993) Expression cDNA cloning of a transforming gene encoding the wild-type Gα 12 gene product. Mol Cell Biol 13:762–768

    PubMed  CAS  Google Scholar 

  • Chen TY, Peng YW, Dhallan RS, Ahamed B, Reed RR, Yau KW (1993) A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362:764–767

    Article  PubMed  CAS  Google Scholar 

  • Chen TY, Illing M, Hsu YT, Yau KW, Molday RS (1994) Subunit 2 (or β) of retinal rod cGMP-gated cation channel is a component of the 240 kDa channel associated protein and mediates Ca2+-calmodulin modulation. Proc Natl Acad Sci USA 91:11757–11761

    Article  PubMed  CAS  Google Scholar 

  • Chinkers M, Wilson EM (1992) Ligand-independent oligomerization of natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 267:18589–18597

    PubMed  CAS  Google Scholar 

  • Chinkers M, Singh S, Garbers DL (1991) Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 266:4088–4093

    PubMed  CAS  Google Scholar 

  • Clapham DE, Neer EJ (1993) New roles for G protein βγ-dimers in transmembrane signalling. Nature 365:403–406

    Article  PubMed  CAS  Google Scholar 

  • Coleman DE, Sprang SR (1996) How G proteins work: a continuing story. Trends Biol Sci 21:41–44

    CAS  Google Scholar 

  • Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Spring SR (1994) Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89:947–951

    Article  PubMed  CAS  Google Scholar 

  • Daub H, Weiss, FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560

    Article  PubMed  CAS  Google Scholar 

  • Degtyarev MY, Spiegel AM, Jones TL (1993) Increased palmitoylation of the Gs protein α subunit after activation by the β-adrenergic receptor or cholera toxin. J Biol Chem 268:23769–23772

    PubMed  CAS  Google Scholar 

  • Dennis EA, Rhee SG, Billah MM, Hannun YA (1991) Role of phospholipases in generating lipid second messengers in signal transduction. FASEB J 5:2068–2077

    PubMed  CAS  Google Scholar 

  • Dhanasekaran N, Vara Prasad MVVS, Wadsworth SJ, Dermott JM, van Rossum G (1994) protein kinase C-dependent and -independent activation of Na+/H+ exchanger by Gα 12 class of G proteins. J Biol Chem 269:11802–11806

    PubMed  CAS  Google Scholar 

  • Dickey BF, Birnbaumer L (eds) (1993) GTPases. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 108)

    Google Scholar 

  • Dietrich A, Meister M, Brazil D, Camps M, Gierschik P (1994) Stimulation of phospholipase C-β2 by recombinant guanine-nucleotide-binding protein βy-dimers produced in a baculovirus/insect cell expression system. Requirement of γ-subunit isoprenylation for stimulation of phospholipase C. Eur J Biochem 219:171–178

    Article  PubMed  CAS  Google Scholar 

  • Divecha N, Irvine RF (1995) Phospholipid signaling. Cell 80:269–278

    Article  PubMed  CAS  Google Scholar 

  • Eigenthaler M, Nolte C, Halbbrügge M, Walter U (1992) Concentration and regulation of cyclic nucleotides, cyclic nucleotide-dependent protein kinases and one of the major substrates in human platelets. Eur J Biochem 205:471–481

    Article  PubMed  CAS  Google Scholar 

  • Eigenthaler M, Ullrich H, Geiger J, Horstrup K, Hönig-Liedl P, Wiebecke K, Walter U (1993) Defective nitrovasodilatorstimulated protein phosphorylation and calcium regulation in cGMP-dependent protein kinase deficient human platelets of chronic myelocytic leukemia. J Biol Chem 268:13526–13531

    PubMed  CAS  Google Scholar 

  • Fields TA, Casey PJ (1995) Phosphorylation of G by protein kinase C blocks interaction with the βγ complex. J Biol Chem 270:23119–23125

    Article  PubMed  CAS  Google Scholar 

  • Fields TA, Linder ME, Casey PJ (1994) Subtype-specific binding of azidoanilido-GTP by purified G protein α subunits. Biochemistry 33:6877–6883

    Article  PubMed  CAS  Google Scholar 

  • Fox JEB, Berndt MC (1989) Cyclic AMP-dependent phosphorylation of glycoprotein 1 b inhibits collagen-induced polymerization of actin in platelets. J Biol Chem 264:8701–8707

    Google Scholar 

  • French PJ, Bijman J, Edixhoven M, Vaandrager AB, Schölte BJ, Lohmann SM, Nairn AC, de Jonge HR (1995) Isotype specific activation of cyctic fibrosis transmembrane conductance regulator-chlorid channels by cGMP-dependent protein kinase II. J Biol Chem 270:26626–26631

    Article  PubMed  CAS  Google Scholar 

  • Fukada Y, Matsuda T, Kokame K, Takao T, Shimonishi Y, Akino T, Yoshizawa T (1994) Effects of carboxyl methylation of photoreceptor G protein γ-subunit in visual transduction. J Biol Chem 269:5163–5170

    PubMed  CAS  Google Scholar 

  • Friebe A, Wedel B, Harteneck C, Foerster J, Schultz G, Koesling D Functions of conserved cysteines of soluble guanylyl cyclase. Biochemistry (in press)

    Google Scholar 

  • Fülle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92:3571–3575

    Article  PubMed  Google Scholar 

  • Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744

    PubMed  CAS  Google Scholar 

  • Garbers DL, Koesling D, Schultz G (1994) Guanylyl cyclase receptors. Mol Biol Cell 5:1–5

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188

    PubMed  CAS  Google Scholar 

  • Garritsen A, van Galen PJM, Simonds WF (1993) The N-terminal coiled-coil domain of β is essential for γ association: a model for G protein βy subunit interaction. Proc Natl Acad Sci USA 90:7706–7710

    Article  PubMed  CAS  Google Scholar 

  • Geiger J, Nolte C, Butt E, Sage SO, Walter U (1992) Role of cAMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets. Proc Natl Acad Sci USA 89:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Jakobs KH (1992) ADP-ribosylation of signal-transducing guanine nucleotide binding proteins by cholera and pertussis toxin. In: Herken H, Hucho F (eds) Selective neurotoxicity. Springer, Berlin Heidelberg New York, pp 807–839 (Handbook of experimental pharmacology, vol 102)

    Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Giuili G, Scholl U, Bulle F, Guellaen G (1992) Molecular cloning of the cDNAs coding for the two subunits of soluble guanylyl cyclase from human brain. FEBS Lett 304:83–88

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ND, Graff G, Haddox MK, Stephenson JH, Glass DB, Moser ME (1978) Redox modulation of splenic cell guanylate cyclase activity: activation by hydro-philic and hydrophobic oxidants represented by ascorbic and dehydroascorbic acids, fatty acids hydoperoxides, and prostaglandin endoperoxides. Adv Cycl Nucl Res 9:101–130

    CAS  Google Scholar 

  • Goody RS (1994) How G proteins turn off. Nature 372:220–221

    Article  PubMed  CAS  Google Scholar 

  • Gudermann T, Nürnberg B, Schultz G (1995) Receptors and G proteins as primary components of transmembrane signal transduction, part 1: G-protein coupled receptors: structure and function. J Mol Med 73:51–63

    Article  PubMed  CAS  Google Scholar 

  • Guthmann F, Mayer B, Koesling D, Kukovetz WR, Böhme E (1992) Characterization of soluble platelet guanylyl cyclase with peptide antibodies. Naunyn Schmiedebergs Arch Pharmacol 346:537–541

    Article  PubMed  CAS  Google Scholar 

  • Haddox MK, Stephenson JH, Moser ME, Goldberg ND (1978) Oxidative-reductive modulatoin of guinea pig splenic cell guanylate cyclase activity. J Biol Chem 253:3143–3152

    PubMed  CAS  Google Scholar 

  • Haffner C, Jarchau T, Reinhard M, Hoppe J, Lohmann S, Walter U (1995) Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP. EMBO J 14:19–27

    PubMed  CAS  Google Scholar 

  • Halbbrügge M, Walter U (1993) The regulation of platelet functions by protein kinases. In: Huang C-K, Sha’afi RI (eds) Protein kinases in blood cell function. CRC, Boca Raton, pp 245–298

    Google Scholar 

  • Haibrügge M, Friedrich C, Eigenthaler M, Schanzenbächer P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 265:3088–3093

    Google Scholar 

  • Hallak H, Muszbek L, Laposata M, Belmonte E, Brass LF, Manning DR (1994) Covalent binding of arachidonate to G protein α subunits of human platelets. J Biol Chem 269:4713–4716

    PubMed  CAS  Google Scholar 

  • Harhammer R, Nürnberg B, Harteneck C, Leopoldt D, Exner T, Schultz G (1996) Distinct biochemical properties of the native members of the G12-protein subfamily characterization of purified Gα 12 from rat brain. Biochem J 319:165–171

    PubMed  CAS  Google Scholar 

  • Harteneck C, Koesling D, Söling A, Schultz G, Böhme E (1990) Expression of soluble guanylate cyclase: catalytic activity requires two subunits. FEBS Lett 272:221–223

    Article  PubMed  CAS  Google Scholar 

  • Harteneck C, Wedel B, Koesling D, Malkewitz J, Böhme E, Schultz G (1991) Molecular cloning and expression of a new a-subunit of soluble guanylyl cyclase. FEBS Lett 292:217–222

    Article  PubMed  CAS  Google Scholar 

  • Hathaway DR, Eaton CR, Adelstein RS (1981) Regulation of human platelet myosin light chain kinase by the catalytic subunit of cyclic AMP-dependent protein kinase. Nature 291:252–254

    Article  PubMed  CAS  Google Scholar 

  • Hausdorf WP, Pitcher JA, Luttrell DK, Linder ME, Kurose H, Parsons SJ, Carón MG, Lefkowitz RJ (1992) Tyrosine phosphorylation of G protein α subunits by pp60c-src. Proc Natl Acad Sci USA 89:5720–5724

    Article  Google Scholar 

  • Hepler JR, Gilman AG (1992) G proteins. Trends Biochem Sci 17:383–387

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1995) MAP kinase pathway in yeast: for mating and more. Cell 80:187–197

    Article  PubMed  CAS  Google Scholar 

  • Hettasch JM, Sellers J (1991) Caldesmon phosphorylation in intact human platelets by cAMP-dependent protein kinase and protein kinase C. J Biol Chem 266:11876–11881

    PubMed  CAS  Google Scholar 

  • Higashijima T, Ferguson KM, Sternweis PC, Smigel MD, Gilman AG (1987) Effects of Mg2+ and the βγ-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem 262:762–766

    PubMed  CAS  Google Scholar 

  • Higgins JB, Casey PJ (1994) In vitro processing of recombinant G protein γ subunits. J Biol Chem 269:9067–9073

    PubMed  CAS  Google Scholar 

  • Hille B (1992) G protein-coupled mechanisms and nervous signaling. Neuron 9:187–195

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Dostmann W, Keilbach A, Lanfgraf W, Ruth P (1992) Structure and physiological role of cGMP-dependent kinase. Biochim Biophys Acta 1135:51–60

    Article  PubMed  CAS  Google Scholar 

  • Horstrup K, Jablonka B, Hönig-Liedl P, Just M, Kocksiek K, Walter U (1992) Phosphorylation of the focal adhesion protein VASP at serinl57 in intact human platelets correltaes with fibrinogen receptor inhibition. Eur J Biochem 255:21–27

    Google Scholar 

  • Horstrup K, Jablonka B, Honig-Liedl P, Just M, Kochsiek K, Walter U (1994) Phosphorylation of focal adhesion vasodilatator-stimulated phosphorprotein at Ser 157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 225:21–27

    Article  PubMed  CAS  Google Scholar 

  • Hourani SMO, Cusack NJ (1991) Pharmacological receptors on blood platelets. Pharmacol Rev 43:243–298

    PubMed  CAS  Google Scholar 

  • Humbert P, Niroomand F, Fischer G, Mayer B, Koesling D, Hinsch KH, Gausepohl H, Frank R, Schultz G, Böhme E (1990) Purification of soluble guanylate cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem 190:273–278

    Article  PubMed  CAS  Google Scholar 

  • Iniguez-Lluhi J, Kleuss C, Gilman AG (1993) The importance of G protein βγ subunits. Trends Cell Biol 3:230–236

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chandhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Iyengar R (1993) Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J 7:768–775

    PubMed  CAS  Google Scholar 

  • Jakobs KH, Aktories K, Schultz G (1984) Mechanism of pertussi toxin action on the adenylate system: inhibition of the turn-on reaction of the inhibitory regulatory site. Eur J Biochem 140:177–181

    Article  PubMed  CAS  Google Scholar 

  • Jarchau T, Häusler C, Markert T, Pöhler D, Vandekerckhove J, DeJonge HR, Lohmann SM, Walter U (1994) Cloning, expression, and in situ localisation of rat intestinal cGMP-dependent protein kinase II. Proc Natl Acad Sci USA 91:9426–9430

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Wu D, Simon MI (1993) The transforming activity of activated Gα 12. FEB S Lett 330:319–322

    Article  CAS  Google Scholar 

  • Joseph SK, Ryan SV (1993) Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J Biol Chem 268:23059–23065

    PubMed  CAS  Google Scholar 

  • Kaldenberg-Stasch S, Baden M, Fessier B, Jakobs KH, Wieland T (1994) Receptor-stimulated guanine nucleoside triphosphate binding to G protéines: nucleotide exchange and β-subunit-mediated phosphotransfer reactions. Eur J Biochem 221:25–33

    Article  PubMed  CAS  Google Scholar 

  • Kalkbrenner F, Dippel E, Wittig B, Schultz G (1996) Specificity of the receptor-G protein interaction: using antisense techniques to identify the functions of G protein-subunits. Biochim Biophys Acta (in press)

    Google Scholar 

  • Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    PubMed  CAS  Google Scholar 

  • Kaupp UB, Niidome T, Tanbe T, Terada S, Bonigk W, Stuhmer W, Cook NJ, Kanagawa K, Matsuo H, Hirose T, Miyata T, Numa S (1989) Primary structure and functional expression form complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–766

    Article  PubMed  CAS  Google Scholar 

  • Kisselev OG, Ermolaeva MV, Gautam N (1994) A farnesylated domain in the G protein γ subunit is a specific determinant of receptor coupling. J Biol Chem 269:21399–21402

    PubMed  CAS  Google Scholar 

  • Kisselev OG, Pronin A, Ermolaeva MV, Gautam N (1995) Receptor-G protein coupling is established by a potential conformational switch in the βγ complex. Proc Natl Acad Sci USA 90:9102–9106

    Article  Google Scholar 

  • Koesling D, Böhme E, Schultz G (1991) Guanylyl cyclases, a growing family of signal-transducing enzymes. FASEB J 5:2785–2791

    PubMed  CAS  Google Scholar 

  • Koesling D, Böhme E, Schultz G (1993) Guanylyl cyclases as effectors of hormone and neurotransmitter receptors. New Compren Biochem 24:325–336

    Article  CAS  Google Scholar 

  • Komalavilas P, Lincoln T (1994) Phosphorylation of the inositol 1,4,5-triphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem 269:9520–9526

    Google Scholar 

  • Körner C, Nürnberg B, Uhde M, Braulke T (1995) Mannose 6-phosphate/insulin-like growth factor II receptor interaction with G-proteins, analysis of mutant cytoplasmatic receptor domains. J Biol Chem 270:287–295

    Article  PubMed  Google Scholar 

  • Kozasa T, Gilman AG (1995) Purification of recombinant G proteins from Sf9 cells by hexahistidine tagging of associated subunits. Characterization of α 12 and inhibition of adenylyl cyclase by α z. J Biol Chem 270:1734–1741

    Article  PubMed  CAS  Google Scholar 

  • Lambbright DG, Noel JP, Hamm HE, Sigler PB (1994) Structural determinants for activation of a heterotrimeric G protein. Nature 369:621–628

    Article  Google Scholar 

  • Lambbright DG, Sondek J, Böhm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379:311–319

    Article  Google Scholar 

  • Laugwitz KL, Spicher K, Schultz G, Offermanns S (1994) Identification of receptor-activated G proteins: selective immunoprecipitation of photolabled G protein α-sunbunits. Methods Enzymol 237:283–294

    Article  PubMed  CAS  Google Scholar 

  • Laurenza A, McHugh Sutkowski E, Seamon KB (1989) Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci 10:442–447

    Article  PubMed  CAS  Google Scholar 

  • Liebmann C, Graness A, Kovalenko M, Adomeit A, Nürnberg B, Wetzker R, Boehmer FD (1996) Tyrosine phosphorylation of Gsα and inhibition of bradykinin-induced activation of the cyclic AMP pathway in A431 cells via epidermal growth factor inhibits. J Biol Chem 271:31098–31105

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7:328–338

    PubMed  CAS  Google Scholar 

  • Linder ME, Middleton P, Hepler JR, Taussig R, Gilman AG, Mumby SM (1993) Lipid modifications of G proteins: α subunits are palmitoylated. Proc Natl Acad Sci USA 90:3675–3679

    Article  PubMed  CAS  Google Scholar 

  • Lopez MJ, Wong SKF, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68

    Article  PubMed  CAS  Google Scholar 

  • Lounsbury KM, Casey PJ, Brass LF, Manning DR (1991) Phosphorylation of Gz in human platelets selectivity and site of modification. J Biol Chem 266:22051–22056

    PubMed  CAS  Google Scholar 

  • Lounsbury KM, Schlegel B, Poncz M, Brass LF, Manning DR (1993) Analysis of Gzα by site-directed mutagenesis. J Biol Chem 268:22051–22056

    Google Scholar 

  • Lowe DG (1992) Human atrial naturiuretic peptide receptor-A guanylyl cyclase is self-assoziated prior to hormone binding. Biochemistry 31:10421–10425

    Article  PubMed  CAS  Google Scholar 

  • Ludwig J, Margalit T, Eismann E, Lancet D, Kaupp UB (1990) Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett 270:24–29

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  Google Scholar 

  • Lupas AN, Lupas JM, Stock JB (1992) Do G protein subunits associate via a three-stranded coiled coil? FEBS Lett 314:105–108

    Article  PubMed  CAS  Google Scholar 

  • Macphee CH, Reifsnyder DH, Moore TA, Lerea KM, Beavo JA (1988) Phosphorylation results in activation of a cAMP phosphodiesterase in human platelets. J Biol Chem 263:10353–10358

    PubMed  CAS  Google Scholar 

  • Marcus AJ, Safier LB (1993) Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J 7:516–522

    PubMed  CAS  Google Scholar 

  • Marietta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234

    Google Scholar 

  • Mayer B, Werner ER (1995) In search of function for tetrahydropioperin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol 351:453–463

    Article  PubMed  CAS  Google Scholar 

  • McKnight GS (1991) Cyclic AMP second messenger systems. Curr Opin Cell Biol 3:213–217

    Article  PubMed  CAS  Google Scholar 

  • Mehta JL, Chen LY, Kone BC, Mehta P, Turner P (1995) Identification of constitutive and induclible forms of nitric oxide synthase in human platelets. J Lab Clin Med 125:370–377

    PubMed  CAS  Google Scholar 

  • Meinicke M, Buechler W, Fischer L, Lohmann S, Walter U (1990) cAMP-dependent protein kinase: subunit diversity and functional role in gene expression. In: Jeserich G, Althaus HH, Waehnelt TV (eds) Cellular and molecular biology of myelination. Springer, Berlin Heidelberg New York (NATO ASI series H, vol 43)

    Google Scholar 

  • Meinicke M, Geiger J, Butt E, Sandberg M, Jahnsen T, Chakraborty T, Walter U, Jarchau T, Lohmann S (1994) Human cGMP-dependent protein kinase Iβ overexpression increases phosphorylation of an endogenous focal contact associated protein VASP without altering the thrombin-evoked calcium response. Mol Pharmacol 46:283–290

    Google Scholar 

  • Milligan G, Mullaney I, McCallum JF (1993) Distribution and relative levels of expression of the phosphoinositidase-C-linked G proteins Gq α and G11 α: abscence of Gna in human platelets and haematopoietically derived cell lines. Biochim Biophys Acta 1179:208–212

    Article  PubMed  CAS  Google Scholar 

  • Mixon MB, Lee E, Coleman DE, Berghuis AM, Gilman AG, Sprang SR (1995) Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270:954–960

    Article  PubMed  CAS  Google Scholar 

  • Moxham CM, Malbon CC (1996) Insulin action impaired by deficiency of the G-protein subunit Giα2. Nature 379:840–844

    Article  PubMed  CAS  Google Scholar 

  • Moyers JS, Linder ME, Shannon JD, Parsons SJ (1995) Identification of the in vitro phosphorylation sites on Gs α mediated by pp60c-src. Biochem J 305:411–417

    PubMed  CAS  Google Scholar 

  • Mumby SM, Kleuss C, Gilman AG (1994) Receptor regulation of G protein palmitoylation. Proc Natl Acad Sci USA 91:2800–2804

    Article  PubMed  CAS  Google Scholar 

  • Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase: activation by azide, nitrocompounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9:145–158

    PubMed  CAS  Google Scholar 

  • Muruganandam A, Mutus B (1994) Isolation of nitric oxide synthase from human platelets. Biochim Biophys Acta 1200:1–6

    PubMed  CAS  Google Scholar 

  • Nathan C, Xie Q (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918

    Article  PubMed  CAS  Google Scholar 

  • Neer EJ, Smith TF (1996) G protein heterodimers: new structures propel new questions. Cell 84:175–178

    Article  PubMed  CAS  Google Scholar 

  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    PubMed  CAS  Google Scholar 

  • Noel JP, Hamm HE, Sigler PB (1993) The 2.2 Å crystal structure of transducin-α complexed with GTPyS. Nature 366:654–663

    Article  PubMed  CAS  Google Scholar 

  • Nolte C, Eigenthaler M, Schanzenbächer P, Walter U (1991) Endothelial cell-dependent phosphorylation of a platelet protein mediated by cAMP- and cGMP-elevating factors. J Biol Chem 266:14808–14812

    PubMed  CAS  Google Scholar 

  • Nolte C, Eigenthaler M, Horstrup K, Honig-Liedl P, Walter U (1994) Synergistic phosphorylation of the focal adhesion-associated vasodilatator-stimulated phos-phoprotein in intact human platelets in response to cGMP- and cAMP-elevating platelets inhibitors. Biochem Pharmacol 48:1569–1575

    Article  PubMed  CAS  Google Scholar 

  • Nürnberg B (1997) Pertussis toxin as a cell biology tool. In: Aktories K (ed) Bacterial toxins. Chapman and Hall, Weinheim (in press)

    Google Scholar 

  • Nürnberg B, Ahnert-Hilger G (1996) Potential roles of heterotrimeric G proteins of the endomembrane system. FEBS Lett 389:61–65

    Article  PubMed  Google Scholar 

  • Nürnberg B, Degtiar VE, Harhammer R, Uhde M, Hescheler J, Schultz G (1994) Hormone-induced Go-subtype-specific inhibition of calcium currents. Naunyn Schmiedebergs Arch Pharmacol 349:R13

    Google Scholar 

  • Nürnberg B, Gudermann T, Schultz G (1995) Receptors and G proteins as primary components of transmembrane signal transduction, part 1: G proteins: structure and function. J Mol Med 73:123–132, corrections: 73:379

    Article  PubMed  Google Scholar 

  • Nürnberg B, Harhammer R, Exner T, Schulze RA, Wieland T (1996) Species- and tissue-dependent diversity of G-protein β-phosphorylation. Evidence for a cofactor. Biochem J 318:717–722

    PubMed  Google Scholar 

  • Obukhov A, Harteneck C, Zobel A, Harhammer R, Kalkbrenner F, Leopoldt D, Lückhoff A, Nürnberg B, Schultz G (1996) Activation of the drosophila cation channel trpl by α-subunits of the Gq-protein subfamily. EMBO J 15:5833–5838

    PubMed  CAS  Google Scholar 

  • Offermanns S, Schultz G (1994) Complex information processing by the transmembrane signaling system involving G proteins. Naunyn Schmiedebergs Arch Pharmacol 350:329–338

    Article  PubMed  CAS  Google Scholar 

  • Offermanns S, Laugwitz KL, Spicher K, Schultz G (1994) G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91:504–508

    Article  PubMed  CAS  Google Scholar 

  • Ohlmann P, Laugwitz KL, Nürnberg B, Spicher K, Schultz G, Cazenave JP, Gachet C (1995) The human platelet ADP-receptor activates Gi2 G proteins. Biochem J 312:775–779

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moneada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  • Parenti M, Vigano MA, Newman CMH, Milligan G, Magee AI (1993) A novel N-terminal motif for palmitoylation of G protein α subunits. Biochem J 291:349–353

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Nürnberg B, Kamm S, Uhde M, Schultz G, Ruth P, Hofmann F (1995) Cyclic GMP-dependent protein kinase blocks pertussis toxin-sensitive hormone receptor signaling pathways in Chinese hamster ovary cells. J Biol Chem 270:9052–9059

    Article  PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moneada S (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197

    Article  PubMed  CAS  Google Scholar 

  • Ray K, Kunsch C, Bonner, Robishaw J (1995) Isolation of cDNA clones encoding eight different human G protein γ subunits, including three novel forms designated γ4, γ10, and γ11 subunits. J Biol Chem 270:21765–21771

    Article  PubMed  CAS  Google Scholar 

  • Reinhard M, Haibrügge M, Scheer U, Wiegand C, Jockusch B, Walter U (1992) The 46/50kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11:2063–2070

    PubMed  CAS  Google Scholar 

  • Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch B, Walter U (1995) The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilinins. EMBO J 14:1583–1589

    PubMed  CAS  Google Scholar 

  • Rens-Domiano S, Hamm HE (1995) Structural and functional relationships of heterotrimeric G-proteins. FASEB J 9:1059–1066

    PubMed  CAS  Google Scholar 

  • Rodbell M, Krans HMJ, Pohl SL, Birnbaumer L (1971) The glucogon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Binding of glucagon: effect of guanyl nucleotides. J Biol Chem 246:1872–1876

    PubMed  CAS  Google Scholar 

  • Roush W (1996) Regulating G protein signaling. Science 271:1056–1057

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Walter U (1994) NO at work. Cell 78:919–925

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Lohmann SM, Walter U (1993) The nitric oxide and cGMP signal-transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178:153–175

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld JR, Sehl P, Quan C, Burnier JP, Lowe DG (1995) Agonist selectivity for three species of natriuretic peptide receptor A. Mol Pharmacol 47:172–180

    PubMed  CAS  Google Scholar 

  • Schrammel A, Behrends S, Schmidt K, Koesling D, Mayer B (1996) Characterisation of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) as a heme site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol (in press)

    Google Scholar 

  • Schulz S, Chrisman TD, Garbers DL (1992) Cloning and expression of guanylin. J Biol Chem 267:16019–16021

    PubMed  CAS  Google Scholar 

  • Sheta EA, McMillian K, Masters BSS (1994) Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase. J Biol Chem 269:15147–15153

    PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Goldsmith PK, Codina J, Unson CG, Spiegel AM (1989) Gi2 mediates α 2-adrenergic inhibition of adenylate cyclase in platelet membranes: in situ identification with Gα C-terminal antibodies. Proc Natl Acad Sci USA 86:7809–7813

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Manji HK, Garritsen A (1993) G proteins and βARK: a new twist for the coiled coil. Trends Biochem Sci 18:315–317

    Article  PubMed  CAS  Google Scholar 

  • Sohn RH, Goldschmidt-Clermont PJ (1994) Profilin: at the crossroads of signal transduction and the actin cytoskeleton. Bioessays 16:465–472

    Article  PubMed  CAS  Google Scholar 

  • Sondek J, Lambbright DG, Noel JP, Hamm HE, Sigler PB (1994) GTPase mechanism of G protein from the 1.7 Å crystal structure of transducin α·GDP·AlF- 4. Nature 372:276–279

    Article  PubMed  CAS  Google Scholar 

  • Sondek J, Böhm A, Lambbright DG, Hamm HE, Sigler PB (1996) Crystal structure of a G protein βγ dimer at 2.1 Å resolution. Nature 379:369–374

    Article  PubMed  CAS  Google Scholar 

  • Spicher K, Kalkbrenner F, Zobel A, Harhammer R, Nürnberg B, Söling A, Schultz G (1994) G12 and G13 α-subunits are immunochemically detectable in membranes of most tissues of various mammalian species. Biochem Biophys Res Commun 198:906–914

    Article  PubMed  CAS  Google Scholar 

  • Spring DJ, Neer EJ (1994) A 14-amino acid region of the G protein γ subunit is sufficient to confer selectivity of γ binding to the β subunit. J Biol Chem 269:22882–22886

    PubMed  CAS  Google Scholar 

  • Sternweis PC, Smrcka AV (1992) Regulation of phospholipase C by G proteins. Trends Biochem Sci 17:502–506

    Article  PubMed  CAS  Google Scholar 

  • Stone JR, Marietta MA (1994) Soluble guanylyl cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterisation of the ferrous and ferric states. Biochemistry 33:5636–5640

    Article  PubMed  CAS  Google Scholar 

  • Stone JR, Sands RH, Dunham R, Marietta MA (1995) Elektron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylyl cyclase. Biochem Biophys Res Commun 207:572–577

    Article  PubMed  CAS  Google Scholar 

  • Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nürnberg B, Gierschik P, Seedorf K, Hsuan J J, Waterfield MD, Wetzker R (1995) Cloning and characterization of a G protein-activated human phosphatidylinositol-3 kinase. Science 269:690–693

    Article  PubMed  CAS  Google Scholar 

  • Strassheim D, Malbon CC (1994) Phosphorylation of Gα i 2 attenuates inhibitory adenylyl cyclase in neuroblastoma/glioma hybrid (NG-108–15) cells. J Biol Chem 269:14307–14313

    PubMed  CAS  Google Scholar 

  • Suppattapone S, Danoff SK, Theibert A, Joseph S, Steiner J, Snyder SH (1988) Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci USA 85:8747–8750

    Article  Google Scholar 

  • Tang WJ, Gilman AG (1992) Adenylyl cyclases. Cell 70:869–972

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Gilman AG (1995) Mammalian membrane-bound adenylyl cyclases. J Biol Chem 270:1–4

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Iñiguez-Lluhi J, Gilman AG (1993) Inhibition of adenylyl cyclases by Giα , Science 261:218–221

    Article  PubMed  CAS  Google Scholar 

  • Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005

    Article  PubMed  CAS  Google Scholar 

  • Thomason PA, James SR, Casey PJ, Downes CP (1994) A G protein βγ-subunit-responsive phosphoinositide 3-kinase activity in human platelet cytosol. J Biol Chem 269:16525–16528

    PubMed  CAS  Google Scholar 

  • Tsai SC, Adamik R, Manganiello VC, Vaughan M (1981) Reversible inactivation of soluble liver guanylate cyclase by disulfides. Biochem Biophys Res Commun 100:637–643

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Oho C, Takisawa H, Ogihara S (1992) Interaction of the low-molecular-mass, guanine-nucleotide-binding protein with the actin-binding protein and its modulation by the cAMP dependent protein kinase in bovine platelets. Eur J Biochem 203:347–352

    Article  PubMed  CAS  Google Scholar 

  • Ushikubi F, Nakamura H-I, Narumiya S (1994) Functional reconstitution of platelet thromboxane A2 receptors with Gq and Gi2 in phospholipid vesicles. Mol Pharmacol 46:808–816

    PubMed  CAS  Google Scholar 

  • Van Biesen T, Hawes BE, Raymond BE, Luttrell LM, Koch WJ, Lefkowitz RJ (1996) Go-protein α-subunits activate mitogen-activated protein kinase via a novel protein kinase C-dependant mechanism. J Biol Chem 271:1266–1269

    Article  PubMed  Google Scholar 

  • Vara Prasad MVVS, Dermott JM, Heasley LE, Johnson GL, Dhanasekaran N (1995) Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of Gα 12 and Gα 13. J Biol Chem 270:18655–18659

    Article  CAS  Google Scholar 

  • Veit M, Nürnberg B, Spicher K, Harteneck C, Ponimaskin E, Schultz G, Schmidt MFG (1994) The α-subunits of G12 and G13 are palmitoylated, but not amidically myristoylated. FEBS Lett 339:160–164

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neuronal messenger. Science 259:381–384

    Article  PubMed  CAS  Google Scholar 

  • Voyno-Yasenetskaya T, Conklin BR, Gilbert RL, Hooley R, Bourne HR, Barber DL (1994) Gα 13 stimulates Na-H exchange. J Biol Chem 269:4721–4724

    PubMed  CAS  Google Scholar 

  • Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196

    PubMed  CAS  Google Scholar 

  • Waldmann R, Walter U (1989) Cyclic nucleotide elevating vasodilatators inhibit platelet aggregation at an early step of the activation cascade. Eur J Pharmacol 159:317–320

    Article  PubMed  CAS  Google Scholar 

  • Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi J, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Giα1 β 1 γ 2.Cell 83:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113:42–87

    Google Scholar 

  • Watson A J, Katz A, Simon MI (1994) A fifth member of the mammalian G protein β-subunit family. J Biol Chem 269:22150–22156

    PubMed  CAS  Google Scholar 

  • Watson S, Arkinstall S (1994) The G protein linked receptor facts book. Academic, New York

    Google Scholar 

  • Wedegaertner PB, Chu DH, Wilson PT, Levis MJ, Bourne HR (1993) Palmitoylation is required for signaling functions and membrane attachment of Gq α and Gs α. J Biol Chem 268:25001–25008

    PubMed  CAS  Google Scholar 

  • Wedel B, Humbert P, Harteneck C, Foerster J, Malkewitz J, Böhme E, Schultz G, Koesling D (1994) Mutation of His-105 of the β 1-subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA 91:2592–2596

    Article  PubMed  CAS  Google Scholar 

  • Wedel B, Harteneck C, Foerster J, Friebe A, Schultz G, Koesling D (1995) Functional domains of soluble guanylyl cyclase. J Biol Chem 270:24871–24875

    Article  PubMed  CAS  Google Scholar 

  • Wieland T, Nürnberg B, Ulibarri I, Kaldenberg-Stasch S, Schultz G, Jakobs KH (1993) Guanine nucleotide specific high energy phosphate transfer by G protein β-subunits. J Biol Chem 268:18111–18118

    PubMed  CAS  Google Scholar 

  • Wilk-Blaszczak MA, Singer WD, Gutowski S, Sternweis PC, Berladetti F (1994) The G protein G13 mediates bradykinin inhibition of voltage-dependent calcium current. Neuron 13:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Wilkie TM, Gilbert DJ, Olsen AS, Chen XN, Amatruda TT, Korenberg JR, Trask BJ, de Jong P, Reed RR, Simon MI, Jenkins NA, Copeland NG (1992) Evolution of the mammalian G protein α subunit multigene family. Nat Genet 1:85–91

    Article  PubMed  CAS  Google Scholar 

  • Williams AG, Woolkalis MJ, Poncz M, Manning DR, Gewirtz AM, Brass LF (1990) Identification of the pertussis toxin-sensitive G proteins in platelets, megakaryocytes, and human erythroleukemia cells. Blood 76:721–730

    PubMed  CAS  Google Scholar 

  • Wittinghofer A (1994) The structure of transducin Gα t: more to view than just ras. Cell 76:201–204

    Article  PubMed  CAS  Google Scholar 

  • Wu XB, Brune B, von Appen F, Ullrich V (1992) Reversible activation of soluble guanylate cyclase by oxidizing agents. Arch Biochem Biophys 294:75–82

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, Ko FN, Kuo SC, Lee FY, Teng CM (1995) YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylyl cyclase. Br J Pharmacol 116:1973–1978

    PubMed  CAS  Google Scholar 

  • Xu N, Bradley L, Ambdukar I, Gutkind JS (1993) A mutant a subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci USA 90:6741–6745

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Voyno-Yasenetskaya T, Gutkind JS (1994) Potent transforming activity of the G13 α subunit defines a novel family of oncogenes. Biochem Biophys Res Commun 201:603–609

    Article  PubMed  CAS  Google Scholar 

  • Yamane HK, Fung BKK (1993) Covalent modifications of G proteins. Annu Rev Pharmacol Toxicol 32:201–241

    Article  Google Scholar 

  • Yang RB, Foster DC, Garbers DL, Fülle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606

    Article  PubMed  CAS  Google Scholar 

  • Yau KW (1994) Cyclic nucleotide-gated channels: an expanding new family of ion channels. Proc Natl Acad Sci USA 91:3481–3483

    Article  PubMed  CAS  Google Scholar 

  • Yuen PST, Potter LR, Garbers DL (1990) A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry 29:10872–10878

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koesling, D., Nürnberg, B. (1997). Platelet G Proteins and Adenylyl and Guanylyl Cyclases. In: von Bruchhausen, F., Walter, U. (eds) Platelets and Their Factors. Handbook of Experimental Pharmacology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60639-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60639-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64488-7

  • Online ISBN: 978-3-642-60639-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics