Skip to main content

Platelet Aggregation

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 126))

Abstract

The formation of a platelet thrombus plays a crucial role in hemostasis and also in pathomechanisms of several arterial disorders, including stroke and myocardial infarction. The initial step in thrombus formation is the adhesion of platelets onto vascular subendothelial connective tissue exposed upon endothelial injury (see Chap. 3). Collagen and von Willebrand factor (vWF) are important constituents of the subendothelial matrix which mediate adhesion and subsequent activation of the platelets. Platelet activation allows interplatelet contact and the formation of platelet aggregates. In this chapter, the molecular mechanisms mediating platelet aggregation and the tests to assess this platelet function in vitro are summarized. In addition, recent progress in the selective inhibition of platelet aggregation as a therapeutical principle is addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrieux A, Hudry-Clergeon G, Ryckewaert JJ (1989) Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GP IIb/IIIa. J Biol Chem 264:9258–9265

    PubMed  CAS  Google Scholar 

  • Aster RH, Jandl JH (1964) Platelet sequestration in man. I. Methods. J Clin Invest 43:843–849

    Article  PubMed  CAS  Google Scholar 

  • Bennett JS (1996) Structural biology of glycoprotein IIb-IIIa. Trends Cardio vasc Med 6(l):31–37

    Article  CAS  Google Scholar 

  • Born GVR (1962a) Quantitative investigations into the aggregation of blood platelets. J Physiol (Lond) 162:67–72

    Google Scholar 

  • Born GVR (1962b) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    Article  PubMed  CAS  Google Scholar 

  • Born GVR (1972) Current ideas on the mechanism of platelet aggregation. Am NY Acad Sci 201:4–11

    Article  CAS  Google Scholar 

  • Cardinal DC, Flower RJ (1980) The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Methods 3:135–158

    Article  PubMed  CAS  Google Scholar 

  • Chang HN, Robertson CR (1976) Platelet aggregation by laminar shear and Brownian motion. Ann Biomed Eng 4:151–157

    Article  PubMed  CAS  Google Scholar 

  • Charo IF, Nannizzi L, Phillips DR, Hsu MA, Scarborough RM (1991) Inhibition of fibrinogen binding to GPIIb-IIIa by a GPIIIa peptide. J Biol Chem 266:1415–1421

    PubMed  CAS  Google Scholar 

  • Charo IF, Kieffer N, Phillips DR (1994) Platelet membrane glycoproteins. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis: basic principles and clinical practice, 3rd edn. Lippincott, Philadelphia, p 489

    Google Scholar 

  • Chow TW, Heliums JD, Moake JL, Kroll MH (1992) Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood 80:113–120

    PubMed  CAS  Google Scholar 

  • Coller BS (1985) A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet glycoprotein IIb/IIIa complex. J Clin Invest 76:101–108

    Article  PubMed  CAS  Google Scholar 

  • Coller BS, Anderson K, Weisman HF (1995) New antiplatelet agents: platelet GPIIb/IIIa antagonists. Thromb Haemost 74(l):302–308

    PubMed  CAS  Google Scholar 

  • Cook NS, Kottirsch G, Zerwes H-G (1994) Platelet glycoprotein IIb/IIIa antagonists. Drugs Future 19:135–159

    Google Scholar 

  • Cox D, Aoki T, Seki J, Motoyama Y, Yoshida K (1994) The pharmacology of integrins. Med Res Rev 14:195–228

    Article  PubMed  CAS  Google Scholar 

  • Day HJ, Holmsen H, Zucker MB (1975) Methods for separating platelets from blood and plasma. Thromb Diath Haemorrh 33:648–654

    PubMed  CAS  Google Scholar 

  • Doolittle RF (1984) Fibrinogen and fibrin. Annu Rev Biochem 53:195–204

    Article  PubMed  CAS  Google Scholar 

  • Du XP, Plow EF, Frelinger AL III, O’Toole TE, Loftus JC, Ginsberg MH (1991) Ligands “activate” integrin alpha IIb beta 3 (platelet GpIIb-IIIa). Cell 65:409–415

    Article  Google Scholar 

  • Eika C (1972) The platelet aggregating effect of eight commercial heparins. Scand J Hematol 9:480–489

    Article  CAS  Google Scholar 

  • Farrell DH, Thiagarajan P, Chung DW, Davie EW (1992) Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci USA 89(2): 10729–10732

    Article  PubMed  CAS  Google Scholar 

  • Feinman RD, Lubowsky J, Caro IF, Zabinski MP (1977) The lumi-aggregometer: a new instrument for simultaneous measurement of secretion and aggregation. J Lab Clin Med 90:125–136

    PubMed  CAS  Google Scholar 

  • Fitzgerald LA, Phillips DR (1985) Calcium regulation of the platelet membrane glycoprotein IIb-IIIa complex. J Biol Chem 260:11366–11374

    PubMed  CAS  Google Scholar 

  • Frelinger AL III, Du XP, Plow EF, Ginsberg MH (1991) Monoclonal antibodies to ligand-occupied conforms of integrin alpha IIb beta 3 (glycoprotein GpIIb-IIIa) alter receptor affinity, specifity, and function. J Biol Chem 266:17106–17112

    PubMed  CAS  Google Scholar 

  • Fressinaud E, Baruch D, Girma J-P, Sakariassen KS, Baumgartner HR, Meyer D (1988) von Willebrand factor-mediated platelet adhesion to collagen involves platelet membrane glycoprotein IIb-IIIa as well as glycoprotein Ib. J Lab Clin Med 112:58–67

    PubMed  CAS  Google Scholar 

  • Frojmovic MM (1973) Quantitative parameterization of the light transmission properties of citrated, platelet-rich plasma as a function of platelet and adenosine diphosphate concentrations and temperature. J Lab Clin Med 82(1):137–153

    PubMed  CAS  Google Scholar 

  • Frojmovic MM (1978) Rheooptical studies of platelet structure and function. In: Spaet TH (ed) Progress in hemostasis and thrombosis, vol 4. Grund and Stratton, New York, p 279

    Google Scholar 

  • Frojmovic MM, Milton JG, Duchastel A (1983) Microscopic measurement of platelet aggregation reveal a low ADP-dependent process distinct from turbidimetrically measured aggregation. J Lab Clin Med 101:964–976

    PubMed  CAS  Google Scholar 

  • Frojmovic MM, Milton JG, Gear AL (1989) Platelet aggregation measured in vitro by microscopic and electronic particle counting. Methods Enzymol 169:134–149

    Article  PubMed  CAS  Google Scholar 

  • Gear ARL (1982) Rapid reaction of platelets studied by a quenched-flow approach: Aggregation kinetics. J Lab Clin Med 100:866–873

    PubMed  CAS  Google Scholar 

  • George JN, Nurden AT, Caen JP (1990) Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood 75:1383–1395

    PubMed  CAS  Google Scholar 

  • Goldsmith HL, Frojmovic MM, Braovac S, Mcintosh F, Wong T (1994) Adenosine diphosphate-induced aggregation of human platelets in flow through tubes: III. Shear and extrinsic fibrinogen-dependent effects. Thomb Haemost 71:78–90

    CAS  Google Scholar 

  • Grant RA, Zucker MB (1978) EDTA-induced increase in platelet surface charge associated with the loss of aggregability. Assessment by partition in aqueous two-phase polymer systems an electrophoretic mobility. Blood 52:515

    PubMed  CAS  Google Scholar 

  • Haverstick DM, Cowan JF, Yamada KM, Santoro SA (1985) Inhibition of platelet binding to fibronectin, fibrinogen and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell binding domain of fibronectin. Blood 66:439–448

    Google Scholar 

  • Hawiger J, Timmons S, Kloczewiak M (1982) Gamma and alpha chains of human fibrinogen possess sites reactive with human platelet receptors. Proc Natl Acad Sci USA 79:2068–2074

    Article  PubMed  CAS  Google Scholar 

  • Hawiger J, Kloczewiak M, Bednarek MA, Timmons S (1989) Platelet receptor recognition domains on the α-chain of human fibrinogen: structure-function analysis. Biochemistry 28:2909–2914

    Article  PubMed  CAS  Google Scholar 

  • Holme H, Murphy S (1981) Influence of platelet count and size on aggregation studies. J Lab Clin Med 97:623–630

    PubMed  CAS  Google Scholar 

  • Hutton RA, Howard MA, Deykin D et al. (1974) Methods for the separation of platelets from plasma. Thromb Diath Haemorrh 31:119–124

    PubMed  CAS  Google Scholar 

  • Hynes RO (1987) A family of cell surface receptors. Cell 48:549–554

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Handa M, Kawano K, Kamata T, Murata M, Araki Y, Anbo H, Kawai K, Watanable I, Itagaki K, Sakai, Rugged ZM (1991) The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest 87:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Handa M, Kamata T, Kawano Y, Kawai K, Watanable K, Sakai F, Mayumi F, Itagaki I, Yoshioka A, Ruggeri ZM (1993) Transmembrane calcium influx associated with von Willebrand factor binding to GPIb in the initiation of shear-induced platelet aggregation. Thromb Haemost 69:496–502

    PubMed  CAS  Google Scholar 

  • Ingerman-Wojenski C, Smith JB, Silver MJ (1983) Evaluation of electrical aggregometry: comparison with optical aggregometry, secretion of ATP, and accumulation of radiolabeled platelets. J Lab Clin Med 101(1):44–51

    PubMed  CAS  Google Scholar 

  • Isenberg WM, McEver RP, Phillips DR (1987) The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering. J Cell Biol 104:1655–1663

    Article  PubMed  CAS  Google Scholar 

  • Kaplan KL, Owen J (1981) Plasma levels of 03B2-thromboglobulin and platelet factor 4 as indices of platelet activation in vivo. Blood 57:199–207

    PubMed  CAS  Google Scholar 

  • Kieffer N, Phillips DR (1990) Platelet membrane glycoproteins: functions in cellular interactions. Annu Rev Cell Biol 6:329–357

    Article  PubMed  CAS  Google Scholar 

  • Kinlough-Rathbone RL, Packham MA, Mustard JF (1970) The effect of glucose on adenosine diphosphate-induced platelet aggregation. J Lab Clin Med 75:780–788

    PubMed  CAS  Google Scholar 

  • Kinlough-Rathbone RL, Packham MA, Mustard JF (1972) The effect of glucose on the platelet response to release-inducing stimuli. J Lab Clin Med 80:247–254

    PubMed  CAS  Google Scholar 

  • Kinlough-Rathbone RL, Mustard JF, Packham MA, Perry DW, Reimers H-J, Cazenave J-P (1977a) Properties of washed human platelets. Thromb Haemost 37:291–298

    PubMed  CAS  Google Scholar 

  • Kinlough-Rathbone RL, Packham MA, Mustard JF (1977b) Synergism between platelet aggregating agents: the role of the arachidonate pathway. Thromb Res 11:567–574

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum NE, Mosesson MW, Amrani DL (1992) Characterization of the gamma chain platelet binding site on fibrinogen fragment D. Blood 79(10):2643–2648

    PubMed  CAS  Google Scholar 

  • Kloczewiak M, Timmons S, Lukas TL, Hawiger J (1984) Platelet receptor recognition site on human fibrinogen: synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain. Biochemistry 23:1767–1774

    Article  PubMed  CAS  Google Scholar 

  • Kloczewiak M, Timmons S, Bednarek MA et al. (1989) Platelet receptor recognition domain on the gamma chain of human fibrinogen and its synthetic peptide analogues. Biochem 28:2915–2923

    Article  CAS  Google Scholar 

  • Lages B, Scrutton MC, Holmsen H (1975) Studies on gel-filtered human platelets: isolation and characterization in a medium containig no added Ca2+, Mg2+, or K+. J Lab Clin Med 86:811–819

    Google Scholar 

  • Latimer P (1975) Transmittance: an index to shape changes of blood platelets. Appl Opt 14:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Latimer P (1982) The platelet aggregometer — an anomalous diffraction explanation. Biophys J 37:353–358

    Article  Google Scholar 

  • Latimer P, Born GVR, Michal F (1977) Application of light-scattering theory to the optical effects associated with the morphology of blood platelets. Arch Bioch Biophys 180:151–159

    Article  CAS  Google Scholar 

  • Lefkovits J, Plow EF, Topol EJ (1995) Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 332:1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Levine SP, Suarez AJ, Sorenson RR, Knieriem LK, Ramond NM (1981) The importance of blood collection methods for assessment of platelet activation. Thromb Res 24:433–437

    Article  PubMed  CAS  Google Scholar 

  • Lumley P, Humphrey PPA (1981) A method for quantitating platelet aggregation and analyzing drug-receptor interactions on platelets in whole blood in vitro. J Pharmacol Methods 6:153–166

    Article  PubMed  CAS  Google Scholar 

  • Manley RJ, Mason SG (1952) Particle motions in sheared suspensions. II. Collisions of uniform spheres. J Colloid Sci 7:352–359

    Article  Google Scholar 

  • Mills DCB (1969) Platelet aggregation. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol 3. Academic, London

    Google Scholar 

  • Milton JG, Frojmovic MM (1983) Turbidimetric evaluations of platelet activation: Relative contributions of measured shape change, volume and early aggregation. J Pharmacol Methods 9:101–115

    Article  PubMed  CAS  Google Scholar 

  • Moon DG, Shainoff JR, Gonda SR (1990) Electron microscopy of platelet interactions with heme-octapeptide-labeled fibrinogen. Am J Physiol 259:611–617

    Google Scholar 

  • Mustard JF, Packham MA (1970) Factors influencing platelet function: adhesion, release and aggregation. Pharmacol Rev 22:97–103

    PubMed  CAS  Google Scholar 

  • Mustard JF, Perry DW, Ardlie NG et al. (1972) Preparation of suspension of washed platelets. Br J Haematol 22:193–202

    Article  PubMed  CAS  Google Scholar 

  • Mustard JF, Perry DW, Kinlough-Rathbone RL, Packham MA (1975) Factors responsible for ADP-induced release reaction of human platelets. Am J Physiol 228:1757–1764

    PubMed  CAS  Google Scholar 

  • Nurden AT (1994) Human platelet membrane glycoproteins. In: Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD (eds) Haemostasis and thrombosis, 3rd edn. Churchill Livingstone, Edinburgh, p 115

    Google Scholar 

  • O’Brien JR (1971) Factors influencing the optical platelet aggregation test. Acta Med Scand [Suppl] 525:43–52

    Google Scholar 

  • Packham MA, Guccione MA, Chang P-L, Mustard JF (1973) Platelet aggregation and release: effects of low concentrations of thrombin or collagen. Am J Physiol 225:38–44

    PubMed  CAS  Google Scholar 

  • Packham MA, Kinlough-Rathbone RL, Mustard JF (1978) Aggregation and agglutination. In: Day HJ, Holmsen H, Zucker MB (eds) Platelet function testing. DHEW Publ no (NIH) 78-1087, US Government Printing Office, Washington DC, p 66

    Google Scholar 

  • Patscheke H (1981) Shape and functional properties of human platelets washed with acid cirtate. Haemostasis 10:14–18

    PubMed  CAS  Google Scholar 

  • Pedvis LG, Wong T, Frojmovic MM (1988) Differential inhibition of the platelet activation sequence: shape change, micro- and macroaggregation by a stable prostacylin analogue (Iloprost). Thomb Haemost 59:323–328

    CAS  Google Scholar 

  • Peerschke EI (1985) The platelet fibrinogen receptor. Semin Hematol 22:241–252

    PubMed  CAS  Google Scholar 

  • Peerschke EI (1995) Regulation of platelet aggregation by post-fibrinogen binding events. Insights provided by dithiothreitol-treated platelets. Thromb Haemost 73(5):862–867

    PubMed  CAS  Google Scholar 

  • Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie G, Ginsberg MH (1985) The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci USA 82:8057–8061

    Article  PubMed  CAS  Google Scholar 

  • Plow EF, D’Souza SE, Ginsberg MH (1992) Ligand binding to GPIIb-IIIa: a status report. Semin Thromb Hemost 18:324–332

    Article  PubMed  CAS  Google Scholar 

  • Rochon Y van P, Frojmovic MM (1993) Regulation of human neutrophil aggregation: comparable latent times, activator sensitivities and exponential decay in aggregability for FMLP, PAF and LTB4. Blood 3460–3468

    Google Scholar 

  • Ruf A, Schlenk RF, Maras A, Morgenstern E, Patscheke H (1992) Contact-induced neutrophil activation by platelets in human cell suspensions and whole blood. Blood 80(5):1238–1246

    PubMed  CAS  Google Scholar 

  • Ruggeri ZM (1994) New insights into the mechanisms of platelet adhesion and aggregation. Semin Hematol 31:229–239

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (1991) Integrins. J Clin Invest 87:1–12

    Article  CAS  Google Scholar 

  • Shirasawa K, Chandler AB (1969) Fine structure of the bond between platelets in artificial thrombi and in platelet aggregates induced by adenosine diphosphate. Am J Pathol 57:127–132

    PubMed  CAS  Google Scholar 

  • Sims PJ, Ginsberg MH, Plow EF, Shattil SJ (1991) Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem 266:7345–7352

    PubMed  CAS  Google Scholar 

  • Sixma JJ (1972) Methods for platelet aggregation. In: Mannucci PM, Gorini S (eds) Platelet function and thrombosis. Plenum, New York

    Google Scholar 

  • Taylor DB, Gartner TK (1992) A peptide corresponding to GPIIb alpha 300-312, a presumptive fibrinogen gamma-chain binding site on the platelet integrin GPIIb/IIIa, inhibits the adhesion of platelets to at least four adhesive ligands. J Biol Chem 267(17):11729–11733

    PubMed  CAS  Google Scholar 

  • Ten Cate JW (1972) Platelet function testes. Clin Haematol 1:283–297

    Google Scholar 

  • Weiss HJ, Hoffmann T, Yoshioka A, Ruggeri ZM (1993) Evidence that the Arg1744Gly1745Asp1746 sequence in the GPIIb-IIIa-binding domain of von Willebrand factor is involved in platelet adhesion and thrombus formation on subendothelium. J Lab Clin Med 122:324–332

    PubMed  CAS  Google Scholar 

  • Weiss JH, Hawiger J, Ruggeri ZM, Turitto VT, Thiagarajan P, Hoffmann T (1989) Fibrinogen-independent interaction of platelets with subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate. J Clin Invest 83:288–297

    Article  PubMed  CAS  Google Scholar 

  • Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg MH (1986) Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol 124:324–334

    PubMed  CAS  Google Scholar 

  • Wencel-Drake JD, Boudignon-Proudhon C, Dieter MG, Criss AB, Parise LV (1996) Internalization of bound fibrinogen modulates platelet aggregation. Blood 87(2):602–612

    PubMed  CAS  Google Scholar 

  • Woods VL, Wolff LE, Keller DM (1986) Resting platelets contain a substantial centrally located pool of glycoprotein IIb-IIIa complex which may be accessible to some but not other extracellular proteins. J Biol Chem 261:15242–15251

    PubMed  CAS  Google Scholar 

  • Xia Z, Frojmovic MM (1994) Aggregation efficiency of activated normal or fixed platelets in a simple shear field: effect of shear and fibrinogen occupancy. Biophys J 66:2190–2201.

    Article  PubMed  CAS  Google Scholar 

  • Zucker MB (1972) Proteolytic inhibitors, contact and other variables in the release reaction of human platelets. Thromb Diath Haemorrh 33:63–68

    Google Scholar 

  • Zucker MB (1975) Effect of heparin on platelet function. Thromb Diath Haemorrh 33:66–72

    Google Scholar 

  • Zucker WH, Shermer RW, Mason RG (1974) Ultrastructural comparison of human platelets separated from blood by various means. Am J Pathol 77:255–261

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruf, A., Frojmovic, M.M., Patscheke, H. (1997). Platelet Aggregation. In: von Bruchhausen, F., Walter, U. (eds) Platelets and Their Factors. Handbook of Experimental Pharmacology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60639-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60639-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64488-7

  • Online ISBN: 978-3-642-60639-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics