Skip to main content

Human Platelet Morphology/Ultrastructure

  • Chapter
Platelets and Their Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 126))

Abstract

The mean resting human platelet was specified to be 1 × 3.1 µm2 in dimension, 4–7.6µm3 in volume (Frojmovic and Milton 1982) and 10pg in weight (Iyengar et al. 1979). Carefully prepared platelet-rich plasma (PRP) collected from citrated blood after venipuncture contains discocytes. The number of discocytes with small pseudopodia (echinodiscocytes) does not exceed 10%. Contact activation during centrifugation is the most abundant reason for the presence of activated platelets in PRP. The prefixation of the whole blood with low concentrations of aldehyde before centrifugation is well recommended (Stockinger et al. 1969) to preserve the discoid shape of platelets for ultra-structural examination. Proven washing procedures (Patscheke 1981) or the preparation of gel filtered platelets — preconditions for investigations on platelets under physiological concentrations of divalentions — preserve the resting state of platelets (Figs, 1a, 2a, 3). Additives like adenosine diphosphate (ADP) scavengers (apyrase) or inhibitors of thromboxane A2 are used to prevent platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckerle MC, Miller DE, Bertagnolli ME, Locke SJ (1989) Activation-dependent redistribution of the adhesion plaque protein, talin, in intact human platelets. J Cell Biol 109:3333–3346

    Article  PubMed  CAS  Google Scholar 

  • Behnke O (1968) Electron microscopical observations on the surface coating of human blood platelets. J Ultrastruct Res 24:51–69

    Article  PubMed  CAS  Google Scholar 

  • Behnke O (1970a) Microtubules in disc shaped blood cells. Int Rev Exp Pathol 9:1–92

    PubMed  CAS  Google Scholar 

  • Behnke O (1970b) The morphology of blood platelet membrane systems. Ser Haemat 3:3–16

    CAS  Google Scholar 

  • Behnke O (1987) Platelet adhesion to native collagens involves proteoglycans and may be a two-step process. Thromb Haemostas 58:786–789

    CAS  Google Scholar 

  • Behnke O (1989) Coated pits and vesicles transfer plasma components to platelet granules. Thromb Haemost 62:718–722

    PubMed  CAS  Google Scholar 

  • Behnke O (1992) Degrading and non-degrading pathways in fluid-phase (non-adsorptive) endocytosis in human blood platelets. J Submicrosc Cytol Pathol 24:169–178

    PubMed  CAS  Google Scholar 

  • Behnke O, Bray D (1988) Surface movements during spreading of blood platelets. Eur J Cell Biol 109:207–216

    Google Scholar 

  • Bentfeld-Barker ME, Bainton F (1982) Identification of primary lysosomes in human megakaryocytes and platelets. Blood 59:472–481

    PubMed  CAS  Google Scholar 

  • Berger G, Caen JP, Berndt MC, Cramer EM (1993) Ultrastructural demonstration of CD36 in the alpha-granule membrane of human platelets and megakaryocytes. Blood 82:3034–3044

    PubMed  CAS  Google Scholar 

  • Berger G, Massé JM, Cramer EM (1996) Alpha-granule membrane mirrors the platelet plasma membrane and contains the glycoproteins lb, IX and V. Blood 87:1385–1395

    PubMed  CAS  Google Scholar 

  • Berry S, Dawicki DD, Agarwal KC, Steiner M (1989) The role of microtubules in platelet secretory release. Biochim Biophys Acta 1012:46–56

    Article  PubMed  CAS  Google Scholar 

  • Bertagnolli ME, Locke SJ, Hensler ME, Bray PF, Beckerle MC (1993) Talin distribution and phosphorylation in thrombin-activated platelets. J Cell Science 106:1189–1199

    PubMed  CAS  Google Scholar 

  • Boyles J, Fox JEB, Phillips DR, Stenberg DE (1985) Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage. J Cell Biol 101:1463–1472

    Article  PubMed  CAS  Google Scholar 

  • Breton-Gorius J, Guichard J (1976) Amelioration techniques permettant de reveler la Peroxydase plaquettaire. Nouv Rev Fr Hemat 16:381–390

    CAS  Google Scholar 

  • Breton-Gorius J, Clezardin P, Guichard J, Debili N, Malaval L, Vainchenker W, Cramer EM, Delmas PD (1992) Localization of platelet osteonectin at the internal face of the alpha-granule membranes in platelets and megakaryocytes. Blood 79:936–941

    PubMed  CAS  Google Scholar 

  • Bryon DA, Lagarde M, Dechavanne M (1978) Stereologic evaluation on in vitro thrombin-induced platelet degranulation and contraction. Nouv Rev Fr Hematol 20:173–178

    PubMed  CAS  Google Scholar 

  • Caen J, Castaldi P, Ruan C (1994) Thrombocytopenias and thrombocytopathies. Rev Invest Clin Suppl:153–162

    Google Scholar 

  • Calvete JJ (1995) On the structure and function of platelet integrin alpha lib beta 3, the fibrinogen receptor. Proc Soc Exp Biol Med 208:346–360

    PubMed  CAS  Google Scholar 

  • Cerletti C, Rajtar G, Marchi E, Degaetano G (1994) Interaction between glycos-aminoglycans, platelets, and leukocytes. Sem Thromb Hemostas 20:245–252

    Article  CAS  Google Scholar 

  • Clemetson KJ (1995) Platelet activation: signal transduction via membrane receptors. Thrombos Haemost 74/1:111–116

    CAS  Google Scholar 

  • Cohen I, Gerrard JM, White JG (1982) Ultrastructure of clots during isometric contraction. J Cell Biol 93:775–787

    Article  PubMed  CAS  Google Scholar 

  • Comfurius P, Bevers EM, Zwaal RFA (1985) The involvement of cytoskeleton in the regulation of transbilayer movement of phospholipids in human blood platelets. Biochim Biophys Acta 815:143–148

    Article  PubMed  CAS  Google Scholar 

  • Cramer EM, Berger G, Berndt MC (1994) Platelet alpha-granule and plasma membrane share two new components: CD9 and PECAM-1. Blood 84:1722–1730

    PubMed  CAS  Google Scholar 

  • Cutler L, Rodan G, Feinstein MB (1978) Cytochemical localization of adenylate cyclase, and of calcium ion, magnesium ion-activated ATPases in the dense tubular system of human blood platelets. Biochim Biophys Acta 542:357–371

    PubMed  CAS  Google Scholar 

  • Daimon T (1992) Freeze-substitution and X-ray microprobe analysis of amine-storage organelles of rat platelets after treatment with reserpine. J Electr Microsc 41:350–356

    CAS  Google Scholar 

  • Deurs van B, Behnke O (1980) Membrane structure of nonactivated and activated human blood platelets as revealed by freeze-fracture: evidence for particle redistribution during platelet contraction. J Cell Biol 87:209–218

    Article  PubMed  Google Scholar 

  • Dierichs R, Ahohen-Sann R, Marquardt T (1992) The influence of the microtu-bule-acting drug, nocoda-zole, and the ATP-depleting system, deoxyglucose-dinitrophenol (DOG/DNP), on the functional morphology of human platelets. Platelets 3:255–263

    CAS  Google Scholar 

  • Dorn GW, Davis MG, D’Angelo DD (1994) Gene expression during phorbol ester-induced differentiation of cultured human megakaryoblastic cells. Am J Physiol 266:C1231-C1239

    PubMed  CAS  Google Scholar 

  • Duyvene de Wit LJ, Heyns P (1987) Ultrastructural morphometric observations on serial sectioned human blood platelet subpopulations. Eur J Cell Biol 43:408–411

    Google Scholar 

  • Ebbeling L, Robertson C, McNicol A, Gerrard JM (1992) Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood 80:718–723

    PubMed  CAS  Google Scholar 

  • Edelmann L (1992) Biological X-ray microanalysis of ions and water: artefacts and future strategies. In: Megias-Megias L, Rodriguez-Garcia MI, Rios A, Aias JM (eds) Electron microscopy 1992. Proc Eur Congr Electron Microsc Vol 1:333–336

    Google Scholar 

  • Eppell SJ, Simmons SR, Albrecht RM, Marchant RE (1995) Cell-surface receptors and proteins on platelet membranes imaged by scanning force microscopy using immunogold contrast enhancement. Biophys J 68:671–680

    Article  PubMed  CAS  Google Scholar 

  • Erichson RB, Katz AJ, Cintron JR (1967) Ultrastructural observations on platelet adhesion reactions. I. Platelet-fibrin interaction. Blood 29:385–400

    PubMed  CAS  Google Scholar 

  • Escolar G, Sauk J, Bravo ML, Krumwiede M, White JG (1987) Immunogold staining of microtubules in resting and activated platelets. Am J Hematol 24:177–188

    Article  PubMed  CAS  Google Scholar 

  • Escolar G, White JG (1991) The platelet open canalicular system: a final common pathway. Blood-Cells 17:476–485

    Google Scholar 

  • Escolar G, White JG (1994) Combined use of immunocytochemical techniques and ligand-gold complexes for investigation of platelet membrane responses to surface activation. Microsc Res Tech 28:308–326

    Article  PubMed  CAS  Google Scholar 

  • Escolar G, Diaz-Ricart M, White JG (1995) Talin does not associate exclusively with alpha(2b)beta(3) integrin in activated human platelets. J Lab Clin Med 125:597–607

    PubMed  CAS  Google Scholar 

  • Estry DW, Mattson JC, Mahoney GJ, Oesterle JR (1991) A comparison of the fibrinogen receptor distribution on adherent platelets using both soluble fibrinogen and fibrinogen immobilized on gold beads. Eur J Cell Biol 54:196–210

    PubMed  CAS  Google Scholar 

  • Faull RJ, Ginsberg MH (1995) Dynamic regulation of integrins. Stem Cells Dayt 13:38–46

    Article  PubMed  CAS  Google Scholar 

  • Feijge MAH, Heemskerk JWM, Hornstra G (1990) Membrane fluidity of non-activated and activated human blood platelets. Biochim Biophys Acta 1025:173–178

    Article  PubMed  CAS  Google Scholar 

  • Fischer TH, Gatling MN, Lacal JC, White GC (1990) rap1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J Biol Chem 265:19405–19408

    PubMed  CAS  Google Scholar 

  • Fox JEB, Boyles JK (1988) Characterization of the platelet membrane cytoskeleton. In: Signal transduction in cytoplasmic organization and cell motility. Alan R Riss Inc, pp 313–324

    Google Scholar 

  • Fox JE, Austin CD, Boyles JK, Steffen PK (1990) Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol 111:483–493

    Article  PubMed  CAS  Google Scholar 

  • Fox JE (1993) Regulation of platelet function by the cytoskeleton. Adv Exp Med Biol 344:175–185

    PubMed  CAS  Google Scholar 

  • Fox JEB (1994a) Shedding of adhesion receptors from the surface of activated platelets (Review) Blood Coagulat Fibrinolys 5:291–304

    CAS  Google Scholar 

  • Fox JE (1994b) Transmembrane signaling across the platelet integrin glycoprotein IIb-IIa. Ann NY Acad Sci 741:75–87

    Article  Google Scholar 

  • Frederik PM, Stuart MCA, Bomans PHH, Busing WM, Burger NJ, Verkleij AJ (1991) Perspective and limitations of cryo-electron microscopy. J Microsc 161:253–262

    Article  PubMed  CAS  Google Scholar 

  • Fritz M, Radmacher M, Gaub HE (1994) Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys J 66:1328–1334

    Article  PubMed  CAS  Google Scholar 

  • Frojmovic MM, Milton JG (1982) Human platelet size, shape and related functions in health and disease. Physiol Rev 62:185–261

    PubMed  CAS  Google Scholar 

  • Gear RL (1984) Rapid platelet morphological changes visualized by scanning-electron microscopy: kinetics derived from a quenched-flow approach. Br J Haematol 56:387–398

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Utor AL, Sanchez-Aguayo I, Hidalgo J (1992) Cytochemical localization of K(+)-dependent P-nitrophenyl phosphatase and adenylate cyclase by using one-step method in human washed platelets. Histochemistry 97:503–507

    Article  PubMed  CAS  Google Scholar 

  • Hagmann J (1993) Pattern formation and handedness in the cytoskeleton of human platelets. Proc Natl Acad Sci USA 90:3280–3283

    Article  PubMed  CAS  Google Scholar 

  • Haimovich B, Kaneshiki N, Ji P (1996) Protein kinase C regulates tyrosine phosphorylation of ppl25FAK in platelets adherent to fibrinogen. Blood 87:152–161

    PubMed  CAS  Google Scholar 

  • Hamamoto K, Ohga S, Nomura S, Yasunaga K (1994) Cellular distribution of CD63 antigen in platelets and in three megakaryocytic cell lines. Histochem J 26:367–375

    Article  PubMed  CAS  Google Scholar 

  • Harrison P, Wilboum B, Debili N, Vainchenker W, Breton-Gorius J, Lawrie AS, Masse JM, Savidge GF, Cramer EM (1989) Uptake of plasma fibrinogen into the alpha granules of human megakaryocytes and platelets. Clin Invest 84:1320–1324

    Article  CAS  Google Scholar 

  • Harrison P (1992) Platelet alpha-granular fibrinogen. Platelets 3:1–10

    Article  PubMed  CAS  Google Scholar 

  • Harrison P, Cramer EM (1993) Platelet alpha-granules. Blood Rev 7:52–62

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH (1992) Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 118:1421–1442

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Chambers KA, Stossel TP (1989a) Association of gelsolin with actin filaments and cell membranes of macrophages and platelets. J Cell Biol 108:467–479

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, DeSisto M (1991) The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment ot actin filaments. J Cell Biol 112:407–425

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Chambers KA, Hopcia KL, Kwiatkowski DJ (1989b) Association of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation. J Cell Biol 109:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Hayward CPM, Kelton JG (1995) Multimerein: a multimeric protein stored in platelet alpha-granules. Platelets 6:1–10

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk JWM, Feijge MAH, Andree HAM, Sage SO (1993) Function of intracellular [Ca++] in exocytosis and transbilayer movement in human platelets surface-labeled with the fluorescent probe l-(4-(trimethylammonio)phenyl)-6-phenyl-1.3.5-hexatriene. Biochim Biophys Acta 1147:194–204

    Article  PubMed  CAS  Google Scholar 

  • Hoak JC (1972) Freeze-etching studies of human platelets. Blood 40:514–522

    PubMed  CAS  Google Scholar 

  • Holmsen H (1990) Biochemistry and function of platelets. In: Williams WJ, Bentier E, Ersten AJ, Lichtman MA (eds) Hematology. McGraw Hill Publ Comp, New York, pp 1182–1200

    Google Scholar 

  • Hols H, Sixma JJ, Leunissen-Bijvelt J, Verkleij A (1985) Freeze-fracture studies of human blood platelets activated by thrombin using rapid freezing. Thromb Haemost 54:574–578

    PubMed  CAS  Google Scholar 

  • Horstrup K, Jablonka B, Hönig-Liedl P, Just M, Kochsiek K, Walter U (1994) Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser 157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 225:21–27

    Article  PubMed  CAS  Google Scholar 

  • Hovig T, Jorgensen L, Packham MA, Mustard JF (1968) Platelet adherence to fibrin and collagen. J Lab Clin Med 71:20–40

    Google Scholar 

  • Hynes RO (1991) The complexity of platelet adhesion to extracellular matrices. Thromb Haemostas 66:40–43

    CAS  Google Scholar 

  • Isenberg WM, McEver RP, Phillips ER, Shuman MA, Bainton DF (1978) The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering. J Cell Biol 104:1655–1663

    Article  Google Scholar 

  • Iyengar GV, Borberg H, Kasperek K, Kiem J, Siegers M, Feinendegen LE, Gross R (1979) Elemental composition of platelets. I. Sampling and sample preparation of platelets for trace-element analysis. Clin Chem 25:699–704

    PubMed  CAS  Google Scholar 

  • Klinger MHF, Klueter H (1995) Immunocytochemical colocalization of adhesive proteins with clathrin in human blood platelets: further evidence for coated vesicle-mediated transport of von Willebrand factor, fibrinogen and fibronectin. Cell Tissue Res 279:453–457

    Article  PubMed  CAS  Google Scholar 

  • Knoll G, Verkleij AJ, Plattner H (1987) Cryofixation of dynamic processes in cells and organelles. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, p 259

    Google Scholar 

  • Kovacsovics TJ, Hartwig JH (1996) Thrombin-induced GPIb-IX centralization on the platelet surface requires actin assembly and myosin II activation. Blood 87:618–629

    PubMed  CAS  Google Scholar 

  • Lefebvre P, White JG, Krumwiede MD, Cohen I (1993) Role of actin in platelet formation. Eur J Cell Biol 62:194–204

    PubMed  CAS  Google Scholar 

  • Lewis JC, Johnson C, Ramsomooj P, Hantgan RR (1988) Orientation and specifity of fibrin protofibril binding to ADP-stimulated platelets. Blood 72:1992–2000

    PubMed  CAS  Google Scholar 

  • Luna EJ, Hitt AL (1992) Cytoskeleton-plasma membrane interactions. Science 258:955–964

    Article  PubMed  CAS  Google Scholar 

  • Lupu F, Calb M, Scurei C, Simoniescu N (1986) Changes in the organization of membrane lipids during human platelet activation. Lab Invest 54:136–145

    PubMed  CAS  Google Scholar 

  • Lüscher EF, Weber S (1993) The formation of the haemostatic plug — a special case of platelet aggregation. An experiment and a survey of the literature. Thromb Haemost 70:234–237

    PubMed  Google Scholar 

  • Metzelaar MJ, Sixma JJ, Nieuwenhuis HJ (1990) Detection of platelet activation using activation specific monoclonal antibodies. Blood Cells 16:85–96

    PubMed  CAS  Google Scholar 

  • Metzelaar MJ, Heijnen HF, Sixma JJ, Nieuwenhuis HK (1992) Identification of a 33-Kd protein associated with the alpha-granule membrane (GMP-33) that is expressed on the surface of activated platelets. Blood 79:372–379

    PubMed  CAS  Google Scholar 

  • Michelson AD, Wencel-Drake JD, Kestin AS, Barnard MR (1994a) Platelet activation results in a redistribution of glycoprotein IV (CD36). Arterioscler Thromb 14: 1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Michelson AD, Benoit SE, Kroll MH, Li JM, Rohrer MJ, Kestin AS, Barnard MR (1994b) The activation-induced decrease in the platelet surface expression of the glycoprotein Ib-IX complex is reversible. Blood 83:3562–3573

    PubMed  CAS  Google Scholar 

  • Monck JR, Fernandez JM (1992) The exocytotic fusion pore. J Cell Biol 119:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern E, Stark G (1975) Morphometric analysis of platelet ultrastructure in normal and experimental conditions. In: Ulutin ON (ed) Platelets. Excerpta Medica, Amsterdam, pp 37–42

    Google Scholar 

  • Morgenstern E, Kho A (1977) Morphometrische Untersuchungen an Blutplättchen. Veränderungen der Plättchenstruktur bei Pseudopodienbildung und Aggregation. Cytobiologie 15:233–249

    Google Scholar 

  • Morgenstern E (1980) Ultracytochemistry of human blood platelets. In: Graumann W, Lojda Z, Pearse AGE, Schiebler TH (eds) Progr Histochem Cytochem 12/4 Fischer Stuttgart-New York, pp 1–86

    Google Scholar 

  • Morgenstern E (1982) Coated membranes in blood platelets. Eur J Cell Biol 26:315–318

    PubMed  CAS  Google Scholar 

  • Morgenstern E, Korell U, Richter J (1984) Platelets and fibrin strands during clot formation. Thromb Res 33:617–623

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern E, Edelmann L, Reimers H-J, Miyashita C, Haurand M (1985) Fibrinogen distribution on surfaces and in organelles of ADP stimulated human blood platelets. Eur J Cell Biol 38:292–300

    PubMed  CAS  Google Scholar 

  • Morgenstern E, Reimers HJ (1986) Ultrastructure of platelet fibrinogen interaction. In: Müller-Berghaus G, Scheefers-Borchel U, Selmayr E, Henschen A (eds) Fibrinogen and its derivates. Amsterdam: Excerpta Medica pp 137–140

    Google Scholar 

  • Morgenstern E, Neumann K, Patscheke H (1987) The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis. Eur J Cell Biol 43:273–282

    PubMed  CAS  Google Scholar 

  • Morgenstern E, Edelmann L (1989) Analysis of dynamic cell processes by rapid freezing and freeze substitution. In: Plattner H (ed) Electron microscopy of subcellular dynamics. CRC Press, Inc Boca Raton, Florida, pp 119–140

    Google Scholar 

  • Morgenstern E, Patscheke H, Mathieu G (1990) The origin of the membrane convolute in degranulating platelets. A comparative study of normal and “gray” platelets. Blut 60:15–22

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern E, Ruf A, Patscheke H (1990b) Ultrastructure of the interaction between human platelets and polymerizing fibrin within the first minutes of clot formation. Blood Coagul Fibrinolys 1:543–546

    Article  CAS  Google Scholar 

  • Morgenstern E (1991) Aldehyde fixation causes membrane vesiculation during platelet exocytosis: a freeze-substitution study. Scanning Microsc Suppl 5:109–115

    Google Scholar 

  • Morgenstern E, Ruf A, Patscheke H (1992) Transport of anti-glycoprotein IIb/IIIa-antibodies into the alpha-granules of unstimulated human blood platelets. Thromb Haemostas 67:121–125

    CAS  Google Scholar 

  • Morgenstern E, Hubertus U, Bastian D (1994) Textured biomaterials as a model for studying formation of focal contacts and rearrangement of the contractile cytoskeleton in platelets. Platelets 5:29–39

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern E, Bastian D, Dierichs R (1995a) The formation of compound granules from different types of secretory organelles in human platelets (dense granules and alpha-granules). A cryofixation/-substitution study using serial sections. Eur J Cell Biol 68:183–190

    PubMed  CAS  Google Scholar 

  • Morgenstern E, Holme PA, Solum NO (1995b) Ultrastructural demonstration of membrane vesiculation on platelets after complement-mediated permeabilization using cryofixation technique. Thromb Haemostas 73:1072

    Google Scholar 

  • Nachmias VT (1980) Cytoskeleton of human platelets at rest and after spreading. J Cell Biol 86:795–802

    Article  PubMed  CAS  Google Scholar 

  • Nakata T, Hirokawa N (1987) Cytoskeletal reorganization of human platelets after stimulation revealed by quick-freeze deep-etch technique. J Cell Biol 105:1771–1780

    Article  PubMed  CAS  Google Scholar 

  • Nichols BA, Setzer PY, Bainton DF (1984) Glucose-6-phosphatase as a cytochemical marker of endoplasmic reticulum in human leukocytes and platelets. J Histochem Cytochem 32:165–171

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuis HK, Van Oosterhout JJG, Rozemuller E, Van Iwaarden F, Sixma JJ (1987) Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53 000-molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 70:838–845

    PubMed  CAS  Google Scholar 

  • Niewiarowski S, Holt JC (1987) Biochemistry and physiology of secreted platelet proteins. In: Colmann RW, Hirsh J, Marder VJ, Salzman MD (eds) Haemostasis and thrombosis. JP Lippincott Comp, Philadelphia, pp 618–630

    Google Scholar 

  • Nishibori M, Cham B, McNicol A, Shalev A, Jain N, Gerrard JM (1993) The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J Clin Invest 91:1775–1782

    Article  PubMed  CAS  Google Scholar 

  • Nurden P, Heilmann E, Paponneau A, Nurden A (1994) Two-way trafficking of membrane glycoproteins in thrombin-activated platelets. Semin Hamatol 31:240–250

    CAS  Google Scholar 

  • O’Toole E, Wray G, Kremer J, Mcintosh JR (1993) High voltage cryomicroscopy of human blood platelets. J Struct Biol 110:55–66

    Article  PubMed  Google Scholar 

  • Patscheke H (1981) Shape and functional properties of human platelets washed with acid citrate. Haemostasis 10:14–27

    PubMed  CAS  Google Scholar 

  • Payne CM (1984) A quantitative ultrastructural evaluation of the cell organelle specificity of the uranaffin reaction in normal human platelets. Am J Clin Pathol 81:62–70

    PubMed  CAS  Google Scholar 

  • Painter RG, Ginsberg MH (1984) Centripetal myosin redistribution in thrombin-stimulated platelets. Relationship to platelet factor 4 secretion. Exp Cell Res 155:198–212

    Article  PubMed  CAS  Google Scholar 

  • Pidard D, Montgomery RR, Bennett JS, Kunicki TJ (1983) Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoproteins IIb/IIIa complex, with intact platelets. J Biol Chem 258:12582–12586

    PubMed  CAS  Google Scholar 

  • Plattner H, Knoll G (1987) Ultrastructural analysis of dynamic cellular processes: a survey of current problems, pitfalls and perspectives. Scanning Microsc 1:1199–1216

    PubMed  CAS  Google Scholar 

  • Plattner H, Knoll G, Erxleben C (1992) The mechanics of biological membrane fusion. Merger of aspects from electron microscopy and patch-clamp analysis. J Cell Sci 103:613–618

    PubMed  Google Scholar 

  • Polanowska-Grabowska R, Geanacopoulos M, Gear AR (1993) Platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial flow conditions causes rapid tyrosine phosphorylation of pp 125FAK. Biochem J 296:543–547

    PubMed  CAS  Google Scholar 

  • Polley MJ, Leung LLK, Clark FY, Nachman RL (1981) Thrombin-induced platelet membrane glycoprotein IIb and IIIa complex formation. An electron microscope study. J Exp Med 154:1058–1068

    Article  PubMed  CAS  Google Scholar 

  • Preissner KT (1991) Structure and biological role of vitronectin. Ann Rev Cell Biol 7:275–310

    Article  PubMed  CAS  Google Scholar 

  • Preissner KT, de Groot P (1993) Platelet adhesion molecules in natural immunity. In: Sim E (ed) Natural immune system: humoral factors. Oxford Univ Press, pp 281–318

    Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567

    Article  PubMed  CAS  Google Scholar 

  • Rao AK (1990) Congenital disorders of platelet function. Hematol Oncol-Clin North Am 4:65–86

    PubMed  CAS  Google Scholar 

  • Reddick RL, Mason RG (1973) Freeze-etch observations on the plasma membrane and other structures of normal and abnormal platelets. Amer J Path 70:473–482

    PubMed  CAS  Google Scholar 

  • Reinhard M, Halbrugge M, Scheer U, Wiegand C, Jockusch BM, Walter U (1992) The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO-J 11:2063–2070

    PubMed  CAS  Google Scholar 

  • Robards AW, Sleytr UB (1985) Freeze-substitution and low temperature embedding. In: Glauert AM (ed) Practical methods in electron microscopy. Vol 10, Low temperature methods in biological electron microscopy. Elsevier, Amsterdam New York Oxford, p 461

    Google Scholar 

  • Roger M, Huitfeldt HS, Hovig T (1992) Ultrastructural morphometric analysis of human blood platelets exposed to minimal handling procedures. APMIS 100:922–929

    Article  PubMed  CAS  Google Scholar 

  • Ruf A, Morgenstern E, Janzarik H, Lüscher E (1986) Morphology of the interaction of collagen fibrils with normal human platelets and thrombasthenic platelets. Thrombos Res 44:447–487

    Article  Google Scholar 

  • Ruf A, Patscheke H, Morgenstern E (1991) Role of internalization in platelet activation by collagen fibers — differential effects of aspirin, cytochalasin D, and prostaglandin E1. Thromb Haemostas 66:708–714

    CAS  Google Scholar 

  • Ruf A, Morgenstern E (1995) Ultrastructural aspects of platelet adhesion on subendothelial structures. Sem Thrombos Hemastas 21:119–122

    Article  CAS  Google Scholar 

  • Ruggiero F, Belleville J, Garrone R, Eloy R (1985) An ultrastructural study of the contact between type I collagen assemblies and the induced human platelet aggregates. J Submicr Cytol 17:11–19

    CAS  Google Scholar 

  • Saelman EUM, Nieuwenhuis HK, Hese KM, de Groot PG, Heijnen HFG, Sage EH, Williams S, McKeown L, Gralnik HR, Sixma JJ (1994) Platelet adhesion to collagen types I-VIII under conditions of stasis and flow is mediated by GPIa/IIa (alpha2beta1-integrin). Blood 85:1244–1250

    Google Scholar 

  • Schick BP (1990) Synthesis of proteins from [35S]methionine by guinea pig megakaryocytes in vivo and time course of appearance of newly synthesized proteins in platelets. Blood 76:887–891

    PubMed  CAS  Google Scholar 

  • Sixma JJ, Berg van den A, Hasilik A, Figura von K, Genze HJ (1985) Immuno-electron microscopical demonstration of lysosomes in human blood platelets and megakaryocytes using anti-cathepsin D. Blood 65:1287–1291

    PubMed  CAS  Google Scholar 

  • Skaer RJ, Emmines JP, Skaer HB (1979) The fine structure of cell contacts in platelet aggregation. J Ultrastruct Res 69:28–42

    Article  PubMed  CAS  Google Scholar 

  • Smeets EF, Comfurius P, Bevers EM, Zwaal RFA (1994) Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochim Biophys Acta 1195:281–286

    Article  PubMed  Google Scholar 

  • Solum NO, Rubach-Dahlberg E, Pedersen TM, Reisberg T, Hogasen K, Funderud S (1994) Complement-mediated permeabilization of platelets by monoclonal antibodies to CD9: inhibition by leupeptin, and effects on the GP Ib-actin-binding protein system. Thromb Res 75:437–452

    Article  PubMed  CAS  Google Scholar 

  • Stahl K, Themann H, Dame WR (1978) Ultrastructural morphometric investigations on normal human platelets. Haemostasis 7:242–251

    PubMed  CAS  Google Scholar 

  • Stark F, Golla R, Nachmias VT (1991) Formation and contraction of a micro-filamentous shell in saponin-permeabilized platelets. J Cell Biol 903–913

    Google Scholar 

  • Steinberg PE, McEver RP, Dhuman MA, Jacqes YV, Bainton DF (1985) A platelet alpha-granule membrane protein (GMP-140) is expressed on the membrane after activation. J Cell Biol 101:880–886

    Article  Google Scholar 

  • Steinbrecht RA, Mueller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, p 149

    Google Scholar 

  • Steiner M (1987) Platelet surface glycosaminoglycans are an effective shield for distinct platelet receptors. Biochim Biophys A 931:286–293

    Article  CAS  Google Scholar 

  • Stenberg PE, Bainton DF (1986) Storage organelles in platelets and megakaryocytes. In: Philipps DR, Shuman MA (eds) Biochemistry of platelets. Acad Press New York, pp 257–294

    Google Scholar 

  • Stockinger L, Weissel M, Lechner K (1968) Thrombozytenpraeparation und Auswertung. Mikroskopie (Wien) 25:262–277

    Google Scholar 

  • Stuart MC, Bevers EM, Comfurius P, Zwaal RF, Reutelingsperger CP, Frederik PM (1995) Ultrastructural detection of surface exposed phosphatidylserine on activated blood platelets. Thromb Haemost 74:1145–1151

    PubMed  CAS  Google Scholar 

  • Tanaka K, Shibata N, Okamoto K, Matsusaka T, Fukuda H, Takagi M, Fujii N (1986) Reorganization of contractile elements in the platelet during clot retraction. J Ultrastr Res 89:98–109

    Article  Google Scholar 

  • Tranzer JP, DaPrada M, Pletscher A (1966) Ultrastructural localization of 5-hydroxytryptamine in blood platelets. Nature (Lond) 212:1574–1575

    Article  CAS  Google Scholar 

  • Vashkinel VK, Petrov MN (1981) Morphometric analysis of platelet ultra-structure in healthy subjects and in patients with acute leukemia, chronic myeloleukemia and myelofibrosis. Medizina (Moscow) 4:30–36

    Google Scholar 

  • Verhallen PFJ, Bevers EM, Comfurius P, Zwaal RFA (1987) Correlation between calpain-mediated cytoskeletal degradation and expression of platelet proco-agulant activity. A role for the platelet membrane-skeleton in the regulation of membrane lipid asymmetry? Biochim Biophys Acta 903:206–217

    Article  PubMed  CAS  Google Scholar 

  • Wang DL, Chang YN, Hsu HT, Usami S, Chien S (1992) Prostaglandins and dibutyryl cyclic AMP enhance platelet resistance to deformation. Thromb Res 65:757–768

    Article  PubMed  CAS  Google Scholar 

  • Wang DL, Pan YT, Wang JJ, Cheng CH, Liu CY (1994) Demonstration of a functionally active tPA-like plasminogen activator in human platelets. Thromb Haemost 71:493–498

    PubMed  CAS  Google Scholar 

  • Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg HH (1982) Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol 124:324–334

    Google Scholar 

  • Wencel-Drake JD (1990) Plasma membrane GPIIb/IIIa. Evidence for a cycling receptor pool. Am J Pathol 136:61–70

    PubMed  CAS  Google Scholar 

  • Werner G, Morgenstern E (1980) Three-dimensional reconstruction of human blood platelets using serial sections. Eur J Cell Biol 20:276–282

    PubMed  CAS  Google Scholar 

  • White JG (1968) Effects of ethylene diamine tetraacetic acid (EDTA) on platelet structure. Scand J Haemat 5:241–254

    Article  PubMed  CAS  Google Scholar 

  • White JG, Krumwiede M (1968) Influence of cytochalasin B on the shape change induced in platelets by cold. Blood 41:241–253

    Google Scholar 

  • White JG (1969) The submembranous filaments of blood platelets. Am J Pathol 56:267–277

    PubMed  CAS  Google Scholar 

  • White JG (1970) A search for the platelet secretory pathway using electron dense tracers. Am J Pathol 58:31–49

    PubMed  CAS  Google Scholar 

  • White JG (1971) Platelet morphology. In: Johnson SA (ed) The circulating platelet. Acad Press, New York London, pp 46–117

    Google Scholar 

  • White JG (1972) Interactions of membrane systems in blood platelets. Am J Pathol 66:295–305

    PubMed  CAS  Google Scholar 

  • White JG, Burris SM, Tukey D, Smith C, Clawson CC (1984) Micropipette aspiration of human platelets; influence of microtubules and actin filaments on deformability. Blood 64:210–214

    PubMed  CAS  Google Scholar 

  • White JG, (1987a) Inherited abnormalities of the platelet membrane and secretory granules. Hum Pathol 18:123–139

    Article  PubMed  CAS  Google Scholar 

  • White JG (1987b) An overview of platelet structural physiology. Scanning Microsc 1:1677–1700

    PubMed  CAS  Google Scholar 

  • White JG, Krumwiede M (1987) Further studies of the secretory pathway in thrombin-stimulated human platelets. Blood 69:1196–1203

    PubMed  CAS  Google Scholar 

  • White JG, Leistikow EL, Escolar G (1990) Platelet membrane responses to surface and suspension activation. Blood Cells 16:43–72

    PubMed  CAS  Google Scholar 

  • White JG (1992a) The dense bodies of human platelets. In: Meyers KM, Barnes CD (eds) The platelet amine storage granule. CRC Press, Boca Raton Ann Arbor London Tokyo, pp 1–29

    Google Scholar 

  • White JG (1992b) Ultrastructural changes in stored platelets. Blood Cells 18:461–479

    PubMed  CAS  Google Scholar 

  • White JG (1992c) Ultrastructural analysis of platelet contractile apparatus. In: Hawiger JJ (ed) Methods in enzymology 215, Part B pp 109–127

    Google Scholar 

  • White JG, Krumwiede M, Cocking-Johnson D, Escolar G (1994) Influence of combined thrombin stimulation, surface activation, and receptor occupancy on organization of GPIb/IX receptors on human platelets. Br J Haematol 88:137–148

    Article  PubMed  CAS  Google Scholar 

  • Winokur R, Hartwig JH (1995) Mechanism of shape change in chilled human platelets. Blood 85:1796–1804

    PubMed  CAS  Google Scholar 

  • Wolpers C, Ruska H (1939) Strukturuntersuchungen zur Blutgerinnung. Klin Wochenschr 18:1077–1081

    Article  Google Scholar 

  • Wolpers C, Ruska H (1939) Strukturuntersuchungen zur Blutgerinnung. Klin Wochenschr 18:1111–1117

    Article  Google Scholar 

  • Woods VL, Wolff LE, Keller DM (1986) Resting platelets contain a substantial centrally located pool of glycoprotein IIb/IIIa complex which may be accesible to some but not other extracellular proteins. J Biol Chem 261:15242–15251

    PubMed  CAS  Google Scholar 

  • Wurzinger LJ, Wolf M, Langen H (1987) Vergleichende morphometrische und funktionelle Untersuchungen der Thrombozyten von Mensch und Schaf. Verh Anat Ges 81:781–782

    Google Scholar 

  • Xu Z, Afzelius A (1988a) The substructure of marginal bundles in human blood platelets. J Ulstrastruct Molecular Struc Res 99:244–253

    Article  CAS  Google Scholar 

  • Xu Z, Afzelius A (1988b) Early changes in the substructure of the marginal bundle in human blood platelets responding to adenosine diphosphate. J Ultrastruct Molecular Struc Res 99:254–260

    Article  CAS  Google Scholar 

  • Zucker-Franklin D (1970) The submembrane fibrils of human blood platelets. J Cell Biol 47:293–299

    Article  PubMed  CAS  Google Scholar 

  • Zucker-Franklin D (1981) Endocytosis by human platelets: metabolic and freeze fracture studies. J Cell Biol 91:706–715

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RFA, Hemker HC (1982) Blood cell membranes and haemostasis. Haemostasis 11:12–39

    PubMed  CAS  Google Scholar 

  • Zwaal RFA, Comfurius P, Bevers EM (1992) Platelet procoagulant activity and microvesicle formation. Its putative role in hemostasis and thrombosis. Biochim Biophys Acta 1180:1–8

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morgenstern, E. (1997). Human Platelet Morphology/Ultrastructure. In: von Bruchhausen, F., Walter, U. (eds) Platelets and Their Factors. Handbook of Experimental Pharmacology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60639-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60639-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64488-7

  • Online ISBN: 978-3-642-60639-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics