Skip to main content

Protein Phosphatases in Platelet Function

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 126))

Abstract

Reversible phosphorylation of proteins regulates a great number of functional responses within cells, including many of those associated with platelet activation. The importance of phosphorylation is emphasised by estimates that approximately one third of cellular proteins contain covalently bound phosphate and that between 2% and 3% of all eukaryotic genes encode for proteins involved in the regulation of protein phosphorylation (Hubbard and Cohen 1993; Hunter 1995). There may be as many as 2000 genes in the human genome encoding proteins involved in the regulation of protein de-phosphorylation, of which fewer that 10% have been cloned (Cohen 1993; Hunter 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharonovitz O, Livne AA, Granot Y (1995) 42kDa protein as a substrate for protein phosphatase(s) in intact human blood platelets. Platelets 6:17–23

    Article  PubMed  CAS  Google Scholar 

  • Bialojan C, Takai A (1988) Inhibitory effect of marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256:283–290

    PubMed  CAS  Google Scholar 

  • Blake R, Walker T, Watson SP (1993) Activation of human platelets by peroxo-vanadate is associated with tyrosine phosphorylation of phospholipase C γ and formation of inositol phosphates. Biochem J 290:471–475

    PubMed  CAS  Google Scholar 

  • Blake R, Asselin J, Walker TW, Watson SP (1994a) Fcγ receptor II stimulated formation of inositol phosphates in human platelets is blocked by tyrosine kinase inhibitors and associated with tyrosine phosphorylation of the receptor. FEBS Lett 342:15–18

    Article  PubMed  CAS  Google Scholar 

  • Blake RA, Schieven GL, Watson SP (1994b) Collagen stimulates tyrosine phosphorylation of phospholipase C-γ2 but not phospholipase C-γ1 in human platelets. FEBS Lett 353:212–216

    Article  PubMed  CAS  Google Scholar 

  • Börsch-Haubold AG, Kramer RM, Watson SP (1995) Cytosolic phospholipase A2 is phosphorylated in collagen- and thrombin-stimulated human platelets independent of protein kinase C and mitogen activated protein kinase. J Biol Chem 270:25885–25892

    Article  PubMed  Google Scholar 

  • Brady-Kalnay SM, Tonks NK (1994) Protein tyrosine phosphatases: from structure to function. Trends Cell Biol 4:73–76

    Article  PubMed  CAS  Google Scholar 

  • Brady-Kalnay SM, Flint AJ, Tonks NK (1993) Homophilic binding of PTP mu, a receptor type tyrosine phosphatase, can mediate cell-cell aggregation. J Cell Biol 122:961–972

    Article  PubMed  CAS  Google Scholar 

  • Chiang TM (1993) The role of protein phosphatases 1 and 2A collagen-platelet interaction. Arch Biochem Biophys 302:55–63

    Article  Google Scholar 

  • Clark EA, Brugge JS (1993) Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol Cell Biol 13:1863–1871

    PubMed  CAS  Google Scholar 

  • Clark EA, Shattil SJ, Brugge JS (1994) Regulation of protein tyrosine kinases in platelets. Trends Biol Sci 19:464–469

    Article  CAS  Google Scholar 

  • Cohen P (1992) Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci 17:408–413

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1993) Important roles for novel protein phosphatases dephosphorylating serine and threonine residues. Biochem Soc Trans 21:884–888

    PubMed  CAS  Google Scholar 

  • Cohen P, Cohen P (1989) Protein phosphatases come of age. J Biol Chem 264:21435–21438

    PubMed  CAS  Google Scholar 

  • Cohen P, Klump, Schelling DL (1989) An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250:596–600

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Brewis ND, Hughes V, Mann DJ (1990) Protein serine/threonine phosphatases: an expanding family. FEBS Lett 268:355–359

    Article  PubMed  CAS  Google Scholar 

  • Collett MS, Purchio AF, Erikson RL (1980) Avian sarcoma virus-transforming protein pp60src shows protein kinase activity specific for tyrosine. Nature 285:167–169

    Article  PubMed  CAS  Google Scholar 

  • da Cruz e Silva OB, da Cruz e Silva EF, Cohen P (1988) Identification of a novel protein phosphatase catalytic subunit by cDNA cloning. FEBS Lett 242:106–110

    Article  PubMed  Google Scholar 

  • Daniel JL, Dangelmaier C, Smith JB (1994) Evidence for a role for tyrosine phosphorylation of phospholipase Cγ2 in collagen-induced platelet cytosolic calcium mobilization. Biochem J 302:617–622

    PubMed  CAS  Google Scholar 

  • Davidson MML, Haslam RJ (1994) Dephosphorylation of cofilin in stimulated platelets: roles for a GTP-binding protein. Biochem J 301:41–47

    PubMed  CAS  Google Scholar 

  • Dawicki DD, Steiner M (1993) Identification of a protein-tyrosine phosphatase from human platelet membranes by an immobilon-based solid phase assay. Anal Biochem 213:245–255

    Article  PubMed  CAS  Google Scholar 

  • Eckhart W, Hutchinson MA, Hunter T (1979) An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18:925–933

    Article  PubMed  CAS  Google Scholar 

  • Erdodi F, Csortos C, Sparks L, Muranyi A, Gergely P (1992) Purification and characterization of three distinct types of protein phosphatase catalytic subunits in bovine platelets. Arch Biochem Biophys 298:682–687

    Article  PubMed  CAS  Google Scholar 

  • Fantus IG, Kadota S, Deragon G, Foster B, Posner BI (1989) Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 28:8864–8871

    Article  PubMed  CAS  Google Scholar 

  • Feinstein MB, Pumiglia K, Lau L-F (1993) Tyrosine phosphorylation in platelets: its regulation and possible role in platelet functions. In: Authi KS, Watson SP, Kakkar VV (eds) Mechanisms of platelet activation and control. Adv Exp Med Biol 344. Plenum, New York, pp 129–149

    Google Scholar 

  • Ferrell JE, Martin GS (1988) Platelet tyrosine-Specific protein phosphorylation is regulated by thrombin. Mol Cell Biol 8:3603–3610

    PubMed  CAS  Google Scholar 

  • Ferrell JE, Martin GS (1989) Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proc Natl Acad Sci USA 86:2234–2238

    Article  PubMed  CAS  Google Scholar 

  • Fletcher MC, Samelson LE, June CH (1993) Complex effects of phenylarsine oxide in T cells: induction of tyrosine phosphorylation and calcium mobilization independent of CD45 expression. J Biol Chem 268:23697–23703

    PubMed  CAS  Google Scholar 

  • Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG (1993) Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 12:4843–4856

    PubMed  CAS  Google Scholar 

  • Garton AJ, Tonks NK (1994) PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. EMBO J 13:3763–3771

    PubMed  CAS  Google Scholar 

  • Greenwalt DE, Tandon NN (1994) Platelet shape change and Ca2+ mobilization induced by collagen, but not thrombin or ADP, are inhibited by phenylarsine oxide. Br J Haematol 88:830–838

    Article  PubMed  CAS  Google Scholar 

  • Gu M, York JD, Warshawsky I, Majerus PW (1991) Idenfication, cloning, and expression of a cytosolic megakaryocyte protein tyrosine phosphatase with sequence homology to cytoskeletal 4.1. Proc Natl Acad Sci USA 88:5867–5871

    Article  PubMed  CAS  Google Scholar 

  • Guan K, Dixon JE (1990) Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249:553–556

    Article  PubMed  CAS  Google Scholar 

  • Guan K, Broyles SS, Dixon JE (1991) A Tyr/Ser protein phosphatase encoded by Vaccinia Virus. Nature 350:359–362

    Article  PubMed  CAS  Google Scholar 

  • Haslam RJ, Lynham JA (1977) Relationship between phosphorylation of blood platelet proteins and secretion of platelet granule constituents. I. Effects of different aggregating agents. Biochem Biophys Res Commun 77:714–722

    Article  PubMed  CAS  Google Scholar 

  • Higashihara M, Takahata K, Kurokawa K, Ikeba M (1992) The inhibitory effects of okadaic acid on platelet function. FEBS Lett 307:206–210

    Article  PubMed  CAS  Google Scholar 

  • Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18:172–177

    Article  PubMed  CAS  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signalling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  • Imaoka T, Lynham JA, Haslam RJ (1983) Purification and characterization of the 47000-dalton protein phosphorylated during degranulation of human platelets. J Biol Chem 258:11404–11414

    PubMed  CAS  Google Scholar 

  • Inagaki N, Ito M, Nakaneo T, Inagaki M (1994) Spatiotemporal distribution of protein kinase and phosphatase activities. Trends Biochem Sci 19:448–453

    Article  PubMed  CAS  Google Scholar 

  • Inazu T, Taniguchi T, Yanagi S, Yamamura H (1990) Protein tyrosine phosphorylation and aggregation of intact human platelets by vanadate with H2O2. Biochem Biophys Res Commun 170:259–263

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen TS, Cohen P (1983a) The protein phosphatases involved in cellular regulation: 1. classification and substrate specificities. Eur J Biochem 132:255–261

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen TS, Cohen P (1983b) Protein phosphatases: properties and role in cellular regulation. Science 221:331–338

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Martin BL, Brautigan DL (1989) Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159:871–877

    Article  PubMed  CAS  Google Scholar 

  • Karaki H, Mitsui M, Nagase H (1989) Inhibitory effects of a toxin okadaic acid, isolated from the black sponge on smooth muscle and platelets. Br J Pharmacol 98:590–596

    PubMed  CAS  Google Scholar 

  • Kim Y, Huang J, Cohen P, Matthews HR (1993) Protein phosphatases 1, 2A and 2C are protein histidine phosphatases. J Biol Chem 268:18513–18518

    PubMed  CAS  Google Scholar 

  • Kozlowski M, Mlinaric-Rascan I, Feng G-S, Shen R, Pawson T, Siminovitch KA (1993) Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med 178:2157–2163

    Article  PubMed  CAS  Google Scholar 

  • Lerea KM (1991) Thrombin-induced effects are selectively inhibited following treatment of intact human platelets with okadaic acid. Biochemistry 30:6819–6824

    Article  PubMed  CAS  Google Scholar 

  • Lerea KM, Tonks NK, Krebs EG, Fischer EH, Glomset JA (1989) Vanadate and molybdate increase tyrosine phosphorylation in a 50-kilodalton protein and stimulate secretion in electropermeabilized platelets. Biochemistry 28:9826–9292

    Article  Google Scholar 

  • Li RY, Gaits F, Ragab A, Ragab-Thomas JM, Chap H (1994a) Translocation of an SH2-containing protein tyrosine phosphatase (SH-PTP1) to the cytoskeleton of thrombin-activated platelets. FEBS Lett 343:89–93

    Article  PubMed  CAS  Google Scholar 

  • Li RY, Ragab A, Gaits F, Ragab-Thomas JM, Chap H (1994b) Thrombin-induced redistribution of protein-tyrosine-phosphatases to the cytoskeletal complexes in human platelets. Cell Mol Biol (Noisy-le-grand) 40:665–675

    CAS  Google Scholar 

  • Li RY, Gaits F, Ragab A, Ragab-Thomas JM, Chap H (1995) Tyrosine phosphorylation of an SH2-containing protein tyrosine phosphatase is coupled to platelet thrombin receptor via a pertussis toxin-sensitive heterotrimeric G-protein. EMBO J 14:2519–2526

    PubMed  CAS  Google Scholar 

  • Luber K, Siess W (1994) Integrin-dependent protein dephosphorylation on tyrosine induced by activation of the thrombin receptor in human platelets. Cell Signal 3:279–284

    Article  Google Scholar 

  • MacKintosh C, MacKintosh RW (1994) Inhibitors of protein kinases and phosphatases. Trends Biochem Sci 19:444–448

    Article  PubMed  CAS  Google Scholar 

  • McNicol A, Robertson C, Gerrard JM (1993) Vanadate activates platelets by enhancing arachidonic acid release. Blood 81:2329–2338

    PubMed  CAS  Google Scholar 

  • Murata K-H, Sakon M, Kambayashi J-I, Yukawa M, Yano Y, Fujitani K, Kawasaki T, Shiba E, Mori T (1992) The possible involvement of protein phosphatase 1 in thrombin-induced Ca2+ influx of human platelets. J Cell Biochem 51:442–445

    Google Scholar 

  • Murata K-H, Sakon M, Kambayashi J-I, Yukawa M, Ariyoshi H, Shiba E, Kawasaki T, Kang J, Mori T (1993) The effects of okadaic acid and calyculin A on thrombin induced platelet reaction. Biochem Int 26:327–334

    Google Scholar 

  • Murphy CT, Westwick J (1994) Role of type 1 and type 2A phosphatases in signal transduction of platelet-activating-factor-stimulated rabbit platelets. Biochem J 301:531–537

    PubMed  CAS  Google Scholar 

  • Nishikawa M, Toyoda H, Saito M, Mortia K, Tawara I, Deguchi K, Kuno T, Shima H, Nagao M, Shirakawa S (1994) Calyculin and okadaic acid inhibit human platelet aggregation by blocking protein phosphatases types 1 and 2A. Cell Signal 6:59–71

    Article  PubMed  CAS  Google Scholar 

  • Oetken C, von Willebrand M, Autero M, Ruutu T, Andersson L, Mustelin T (1992) Phenylarsine oxide augments tyrosine phosphorylation in hematopoietic cells. Eur J Haematol 49:208–214

    Article  PubMed  CAS  Google Scholar 

  • Plutzky J, Neel BG, Rosenberg RD (1992) Isolation of a src homology 2-containing tyrosine phosphatase. Proc Natl Acad Sci USA 89:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Poole AW, Watson SP (1995) Collagen Stimulates mobilisation of Ca2+ in single platelets through a tyrosine kinase dependent pathway. Br J Pharmacol 115:101–106

    PubMed  CAS  Google Scholar 

  • Poole AW, Blake R, Asselin J, Watson SP (1993) Tyrosine kinase inhibitors block the increase in Ca2+ that occurs on the adhesion of single platelets to collagen. Br J Pharmacol 110:41P

    Google Scholar 

  • Pumiglia KM, Lau L-F, Huang C-K, Burroughs S, Feinstein MB (1992) Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). Biochem J 286:441–449

    PubMed  CAS  Google Scholar 

  • Ravetch JV (1994) Fc receptors: rubor redox. Cell 78:553–560

    Article  PubMed  CAS  Google Scholar 

  • Sakon M, Kambayashi J-I, Kajiwara Y, Uemura Y, Shiba E, Kawasaki T, Mori T (1990) Platelet protein phosphatases and their endogenous substrates. Biochem Int 22:149–161

    PubMed  CAS  Google Scholar 

  • Sakon M, Kambayashi J-I, Murata KH (1994) The involvement of protein phosphatases in platelet activation. Platelets 5:130–134

    Article  PubMed  CAS  Google Scholar 

  • Sargeant P, Farndale RW, Sage SO (1994) Calcium store depletion in dimethyl B APTA-loaded human platelets increases protein tyrosine phosphorylation in the absence of a rise in cytosolic calcium. Exp Physiol 79:269–272

    PubMed  CAS  Google Scholar 

  • Sawrup G, Cohen S, Garbers DL (1982) Inhibition of phosphotyrosyl protein phosphatase activity by vanadate. Biochem Biophys Res Commun 107:1104–1109

    Article  Google Scholar 

  • Schreiber SI (1992) Immunophilin-sensitive protein phosphatase action in cell signalling pathways. Cell 70:365–368

    Article  PubMed  CAS  Google Scholar 

  • Shenolikar S (1994) Protein serine/threonine phosphatases: new avenues for cell regulation. Annu Rev Cell Biol 10:55–86

    Article  PubMed  CAS  Google Scholar 

  • Smilowitz HM, Aramli L, Xu D, Epstein PM (1991) Phosphotyrosine phosphatase activity in human platelets. Life Sci 49:29–37

    Article  PubMed  CAS  Google Scholar 

  • Sugatani J, Steinhelper ME, Saito K, Olson MS, Hanahan DJ (1987) Potential involvement of vicinal sulfhydryls in stimulus-induced rabbit platelet activation. J Biol Chem 262:16995–17001

    PubMed  CAS  Google Scholar 

  • Sun H, Tonks NK (1994) The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci 19:480–485

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Charles CH, Lau LF, Tonks NK (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75:487–493

    Article  PubMed  CAS  Google Scholar 

  • Takayama H, Ezumi Y, Ichinohe T, Okuma M (1993) Involvement of GPIIb-IIIa on human platelets in phosphotyrosine-specific dephosphorylation. Biochem Biophys Res Commun 194:472–477

    Article  PubMed  CAS  Google Scholar 

  • Tallant EA, Wallace RW (1985) Characterisation of a calmodulin-dependent protein phosphatase from human platelets. J Biol Chem 260:7744–7751

    PubMed  CAS  Google Scholar 

  • Tallant EA, Brumley LM, Wallace RW (1988) Activation of a calmodulin-dependent phosphatase by a Ca2+-dependent protease. Biochemistry 27:2205–2211

    Article  PubMed  CAS  Google Scholar 

  • Tonks NK, Yang Q, Gebbink MFBG, Franza BR, Hill DE, Sun H, Brady-Kalnay S (1992) Protein tyrosine phosphates: the problems of a growing family. Cold Spring Harb Symp Quant Biol 17:87–94

    Google Scholar 

  • Torti M, Lapetina EG (1992) Role of rap1B and p21ras GTPase-activating protein in the regulation of phospholipase C-gammal in human platelets. Proc Natl Acad Sci USA 89:2277–2279

    Article  Google Scholar 

  • Tuy FPD, Henry J, Rosenfield C, Kahn A (1983) High tyrosine kinase activity in normal nonproliferating cells. Nature 305:435–438

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    Article  PubMed  CAS  Google Scholar 

  • Vostal JG, Shulman NR (1993) Vinculin is major platelet protein that undergoes Ca2+-dependent tyrosine phosphorylation. Biochem J 294:675–680

    PubMed  CAS  Google Scholar 

  • Vostal JG, Jackson WL, Shulman NR (1991) Cytosolic and stored calcium control tyrosine phosphorylation of specific platelet proteins. J Biol Chem 266:16911–16916

    PubMed  CAS  Google Scholar 

  • Walker T, Watson SP (1992) Okadaic acid inhibits activation of phospholipase C in human platelets by mimicking the actions of protein kinases A and C. Br J Pharmacol 105:627–632

    PubMed  CAS  Google Scholar 

  • Walter U, Eigenthaler M, Geiger J, Reinhar M (1993) Role of cyclic nucleotide-dependent protein kinases and their common substrate VASP in the regulation of human platelets In: Authi KS, Watson SP, Kakkar VV (eds) Mechanisms of platelet activation and control. Adv Exp Med Biol 344. Plenum, New York, pp 237–251

    Google Scholar 

  • Ward Y, Gupta S, Jensen P, Wartmenn M, Davis R, Kelly K (1994) Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PACÍ. Nature 367:651–654

    Article  PubMed  CAS  Google Scholar 

  • Watson SP, Lapetina EG (1985) 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced production of inositol phosphates in human platelets; possible implications for negative feedback regulation of inositol phospholipid hydrolysis. Proc Natl Acad Sci USA 82:2623–2626

    Article  PubMed  CAS  Google Scholar 

  • Watson SP, McConnell RT, Lapetina EG (1984) The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem 259:13199–13203

    PubMed  CAS  Google Scholar 

  • Watson SP, Ruggiero M, Abrahams SL, Lapetina EG (1986) Inositol 1,4,5-trisphosphate induces aggregation and release of 5–hydroxytryptamine from saponin-permeabilised human platelets. J Biol Chem 261:5368–5372

    PubMed  CAS  Google Scholar 

  • Watson SP, Blake RA, Lane T, Walker TR (1993) The use of inhibitors of protein kinases and protein phosphatases to investigate the role of protein tyrosine phosphorylation in platelet activation. In: Authi KS, Watson SP, Kakkar VV (eds) Mechanisms of platelet activation and control. Adv Exp Med Biol 344. Plenum, New York, pp 105–118

    Google Scholar 

  • Weiss A, Littman DR (1994) Signal transduction by lymphocyte antigen receptors. Cell 76:263–274

    Article  PubMed  CAS  Google Scholar 

  • Yanaga F, Asselin J, Schieven G, Watson SP (1995a) Phenylarsine oxide inhibits tyrosine phosphorylation of phospholipase Cγ2 in human platelets and phospho-lipase Cγ1 in NIH-3T3 fibroblasts. FEBS Lett 368:377–380

    Article  PubMed  CAS  Google Scholar 

  • Yanaga F, Poole A, Asselin J, Blake R, Schieven G, Clark EA, Law C-L, Watson SP (1995b) Syk interacts with tyrosine phosphorylated proteins in human platelets activated by collagen and crosslinking of the Fcγ–IIA receptor. Biochem J 311:471–478

    PubMed  CAS  Google Scholar 

  • Yano Y, Kambayashi J, Shiba E, Sakon M, Oiki E, Fukuda K, Kawasaki T, Mori T (1994) The role of protein phosphorylation and cytoskeletal reorganisation in microparticle formation from the platelet plasma membrane. Biochem J 299:303–308

    PubMed  CAS  Google Scholar 

  • Yano Y, Sakon M, Kambayashi J, Kawasaki T, Senda T, Tanak K, Yamada F, Shibata N (1995) Cytoskeletal reorganisation of human platelets induced by the protein phosphatase 1/2A inhibitors okadaic acid and calyculin. Biochem J 307:439–449

    PubMed  CAS  Google Scholar 

  • Young SW, Poole RC, Hudson AT, Halestrap AP, Denton RM, Tavare JM (1993) Effects of tyrosine kinase inhibitors of protein-kinase independent systems. FEBS Lett 316:278–282

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watson, S.P. (1997). Protein Phosphatases in Platelet Function. In: von Bruchhausen, F., Walter, U. (eds) Platelets and Their Factors. Handbook of Experimental Pharmacology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60639-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60639-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64488-7

  • Online ISBN: 978-3-642-60639-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics