Skip to main content
  • 42 Accesses

Zusammenfassung

Die Schwächung der Emissionsquanten führt besonders bei SPECT-Aufnahmen des Herzens zu Artefakten und fehlerhafter Repräsentation von Aktivitätsverteilungen im Schnittbild. Darch wird die Spezifität klinischer Myokardperfusionsstudien reduziert. Verfahren zur Korrektur der Schwächung bei SPECT besonders in Situationen einer nichthomogenen Schwächungsverteilung sind deshalb wichtig. Allerdings ist hier eine Schwächungskorrektur nicht einfach durchzuführen. Es existieren unterschiedliche Lösungsansätze, die zum einen vor der Rekonstruktion der Schnittbilder, zum anderen nach der Rekonstruktion angewendet werden. Die Fortschritte in der Computertechnologie machen neuerdings die Anwendung dieser Verfahren auch in der klinischen Routine möglich

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bacharach SL, Buvat I (1995) Attenuation correction in cardiac positron emission tomography and single–photon emission computed tomography. J Nucl Cardiol 2:246–255.

    Article  PubMed  CAS  Google Scholar 

  • King MA, Tsui BMW, Pan T–S (1995) Attenuation compensation for cardiac single–photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 2:513–524.

    CAS  Google Scholar 

  • King MA, Tsui BMW, Pan T–S, Glick SJ, Soares EJ (1996) Attenuation compensation for car–diac single–photon emission computed tomographic imaging: Part 2. Attenuation compensation algorithms. J Nucl Cardiol 3:55–63.

    CAS  Google Scholar 

  • Maze A, Le Cloirec J, Collorec R, Bizais Y, Briandet P, Bourguet P (1993) Iterative reconstruction methods for nonuniform attenuation distributions in SPECT. J Nucl Med 34:1204–1209.

    PubMed  CAS  Google Scholar 

  • Chang LT (1978) A method for attenuation correction in radionuclides computed tomography. IEEE Trans Nucl Sci 25:638–643.

    Article  Google Scholar 

  • Kay DB, Kewes JW (1975) First order corrections for absorption and resolution compensation in radionuclide Fourier tomography. J Nucl Med 16: 540–541.

    Google Scholar 

  • Bourguignon MH, Berrah H, Bendriem B, Riddell C, Valette H, Wartski M, DeDreuille O, Jouve B, Syrota A (1993) Correction of attenuation in SPECT with an attenuation coefficient map: a new method. J Nucl Biol Med 37:26–32.

    PubMed  CAS  Google Scholar 

  • Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RE (1988) A quantitative comparison of attenuation–weighted backprojection with multiplicative and iterative postprocessing attenuation compensation in SPECT.IEEE Trans Med Imag 7:127–134.

    Google Scholar 

  • Tsui BMW, Gullberg GT, Edgerton ER, Ballard JG, Perry UR, McCartney WH, Berg J (1989) Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 30: 497–507.

    PubMed  CAS  Google Scholar 

  • Wallis JW, Miller TR (1993) Rapidly converging iterative reconstruction algorithms in single–photon emission computed tomography. J Nucl Med 34:1793–1800.

    PubMed  CAS  Google Scholar 

  • Walters TE, Simon W, Chesler DA, Correia JA (1981) Attenuation correction in gamma emission computed tomography. J Comput Assist Tomogr 5: 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Manglos SJ, Jaszczak RJ, Floyd CE (1988) Weighted backprojection implemented with a nonuniform attenuation map for improved SPECT quantitation.IEEE Trans Nucl Sci 35: 625–628.

    Google Scholar 

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8:308–316.

    Google Scholar 

  • Fessler JA (1994) Penalized weighted least squares image reconstruction for positron emission tomography.IEEE Trans Med Imag 13:290–300.

    Google Scholar 

  • Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR (1996) Simultaneous transmission/emission myocardial perfusion tomography. Diagnostic accuracy of attenuation–corrected 99m–Tc–sestamibi single–photon emission computed tomography. Circulation 93:463–473.

    PubMed  CAS  Google Scholar 

  • Frey EC, Tsui BMW, Perry JR (1992) Simultaneous acquisition of emission and transmission data for improved thallium–201 cardiac SPECT imaging using a technetium–99m transmission source. J Nucl Med 33: 2238–2245.

    PubMed  CAS  Google Scholar 

  • Tan P, Bailey DL, Meikle SR, Eberl S, Fulton R, Hutton BF (1993) A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 34:1752–1760.

    PubMed  CAS  Google Scholar 

  • Tung CH, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT (1992) Nonuniform attenuation correction using simultaneous transmission and emission converging tomography.IEEE Trans Nucl Sci 39:1134–1143.

    Google Scholar 

  • Ficaro EP, Fessler JA, Rogers WL, Schwaiger M (1994) Comparison of americium–241 and technetium–99m as transmission sources for attenuation correction of thallium–201 SPECT imaging of the heart. J Nucl Med 35:652–663.

    PubMed  CAS  Google Scholar 

  • Jaszczak RJ, Gillard DR, Hanson MW, Jang S, Greer KL, Coleman RE (1993) Fast transmission CT for determining attenuation maps using a collimated line source, rotatable air–copper–lead attenuators and fan–beam collimation. J Nucl Med 34:1577–1586.

    PubMed  CAS  Google Scholar 

  • Sitek A, Celler A, Harrop R (1996) Multiple line sources for SPECT transmission imaging. J Nucl Med 37:120 pp(Abstr).

    Google Scholar 

  • Ficaro EP, Fessler JA, Ackermann RJ, Rogers WL, Corbett JR (1995) Simultaneous transmission–emission thallium–201 cardiac SPECT: Effect of attenuation correction on myocardial tracer distribution. J Nucl Med 36:921–931.

    PubMed  CAS  Google Scholar 

  • Ficaro EP, Hawman EG, Schwaiger M (1994) Simultaneous transmission/emission tomography using a line source with an off–center fanbeam collimator. J Nucl Med 35:191(Abstr).

    Google Scholar 

  • Manglos SH, Gagne GM, Bassano DA (1993) Quantitative analysis of image truncation in focal–beam CT. Phys Med Biol 38:1443–1457.

    Article  Google Scholar 

  • Boning G, Ficaro E, Nekolla S, Schneider–Eicke J, Weber W, Kretschko J, Schwaiger M (1995) Attenuation correction for a multi head SPECT system: Initial validation. J Nucl Med 36:11(Abstr).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziegler, S.I., Matsunari, I. (1997). Schwächungskorrektur bei der Myokard-SPECT. In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Herzens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60621-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60621-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64479-5

  • Online ISBN: 978-3-642-60621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics