Skip to main content

“Hibernating myocardium” — winterschlafendes Myokard: klinische Bedeutung

  • Chapter
Single-Photon-Emissions-Computertomographie (SPECT) des Herzens
  • 48 Accesses

Zusammenfassung

Die regionale oder globale Einschränkung der Pumpfunktion ist ein gemeinsames und damit unspezifisches Merkmal vieler pathologischer Zustände des Myokards. Ursächlich kommen neben idiopathischen Kardiomyopathien, Erregungsausbreitungsstörungen und Sepsis v.a. vaskuläre — als ohnehin häufigste — Herzerkrankungen in Frage. Bei der makrovaskulären Form auf dem Boden einer Arteriosklerose zielen die akut interventionellen (intravenöse oder intrakoronare Lyse, Rescue-PTCA oder Notfall-ACVB-Operation) und die elektivinvasiven Therapiestrategien sowohl auf die Besserung der Symptomatik als auch auf die günstige Beeinflussung der Prognose. Groß angelegte Studien wie GISSI-2 [1] und ISIS-2 [2] zeigten, daß sowohl die erfolgreiche Thrombolyse nach akutem Infarkt als auch die elektive ACVB-Operation bei chronischer KHK eine signifikante Prognoseverbesserung erzielen, dies wohl hauptsächlich infolge der Verbesserung der ventrikulären Funktion [3]. Ebenso wird ein Zusammenhang von regionalem „Perfusions-Metabolismus-mismatch" und dem Auftreten von ventrikulären Tachykardien diskutiert [4]. Im Fall der chronischen stabilen oder instabilen KHK setzt die individuell optimierte Therapie eine rationale Diagnostik - primär die Erhebung des Koronarstatus - voraus. Häufig wird in dessen Kenntnis, anamnestischer Daten und des aktuellen klinischen Bildes bereits die Entscheidung, ob und welches Revaskularisationsverfahren zum Einsatz kommen soll, zu treffen sein. Es verbleibt jedoch eine Teilgruppe von Patienten, bei denen mit kon-ventionell-kardiologischen Methoden nicht festzulegen ist, ob die Reperfusion eines funktionsgeminderten Myokardareals die Normalisierung der regionalen Kontraktilität auf dem Boden einer überwiegend erhaltenen Myokardvitalität in Aussicht stellt. Dies gilt vermutlich ebenso für die PTCA wie für die ACVB-Operation, bei der das prognostische Ergebnis von mehreren Einflußfaktoren abhängt: In erster Linie von der perioperativen Mortalität bei Komplikationen, die bei älteren Patienten, bei Re-oder Notfalloperationen, bei Hauptstammstenosen und bei hochgradig eingeschränkter linksventrikulärer Ejektionsfraktion (LVEF) zunehmen. In Deutschland wurden 199128528 Patienten einer ACVB-Operation unterzogen, wobei die Mortalität innerhalb der ersten 30 Tage bei 2,6% lag [5]. In Kanada wurden in Abhängigkeit von der präoperativen LVEF entsprechende Werte zu 2,3% (LVEF > 40%), 4,8% (LVEF zwischen 40% und 20%) und 9,8% (LVEF < 20%) ermittelt [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. GISSI-2. Gruppo italiano per lo studio della Streptokinase nell infarto miocardio (1986) Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet I: 397–401.

    Google Scholar 

  2. ISIS-2. Second international study of infarct survival collaborative group (1988) Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction. ISIS-2. Lancet II: 348–360.

    Google Scholar 

  3. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72 (Suppl V): 123–35.

    Google Scholar 

  4. Vester EG, Ganschow US, Reinhardt M et al. (1995) Zusammenhang zwischen myokardialem Perfusions-Metabolismus-Mismatch und ventrikulären Tachykardien im chronischen Postinfarktstadium. Z Kardiol 84 (Suppl 1): 5 (Abstr).

    Google Scholar 

  5. Kalmar P, Irrgang E (1992) Cardiac surgery in Germany during 1991 A report by the german society for thoracic and cardiovascular surgery. Thorac Cardiovasc Surg 40:163–165

    Google Scholar 

  6. Christakis GT, Weisel RD Fremes SE et al. (1992) Coronary artery bypass grafting in patients with poor ventricular function. Cardiovascular surgeons of the university of Toronto. Thorac Cardiovasc Surg 103:1083–1092.

    CAS  Google Scholar 

  7. Coronary artery surgery study (CASS) (1983) A randomized trial of coronary artery bypass surgery. Survival data. Circulation 68: 939–950.

    Google Scholar 

  8. Bell MR, Gersh BJ, Schaff HV et al. (1992) Effect of completeness of revascularization on long-term outcome of patients with three-vessel disease undergoing coronary artery bypass surgery. A report from the coronary artery surgery study (CASS) registry. Circulation 86:446–457.

    PubMed  CAS  Google Scholar 

  9. Loop FD, Lytle BW, Cosgrove DM et al. (1986) Influence of the interna-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 314:1–6.

    Article  PubMed  CAS  Google Scholar 

  10. Gleichmann U, Mannebach H, Lichtlen P (1995) 10. Bericht über Struktur und Leistungszahlen der Herzkatheterlabors in der Bundesrepublik Deutschland. Z Kardiol 84: 327–333.

    Google Scholar 

  11. Röthlisberger C, Meier B on behalf the working group on coronary circulation of the european society of cardiology (1995) Coronary interventions in europe 1992. Eur Heart J 16: 922–929.

    Google Scholar 

  12. Nietsch C, Haubold S (1996) Ergebnisse der Erhebung: PTCA/Koros/koronare Stents in Deutschland 1995. MMF - Medizinische Marktforschung, Berlin Bochum.

    Google Scholar 

  13. Knapp WH (1996) Möglichkeiten und Grenzen der Myokardperfusionsszintigraphie für die Vitalitätsdiagnostik. Nucl Med 34:118–126.

    Google Scholar 

  14. Schulz R, Heusch G (1995) Characterization of hibernating and stunned myocardium. Eur Heart J16 (Supplement J): 19–25.

    Google Scholar 

  15. Ross J Jr. (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083.

    Google Scholar 

  16. Guth BD, Martin JF, Heusch G (1987) Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 10: 673–681.

    Article  PubMed  CAS  Google Scholar 

  17. Elsässer A, Schlepper M, Schaper J (1995) Klinische und morphologische Befunde bei „hibernating myocardium". Z Kardiol 84 (Suppl) 1:141 (Abstract).

    Google Scholar 

  18. Flameng W, Suy R, Schwarz F et al. (1981) Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: Determinants of reversible segmental asynergy postrevascularization surgery. Am Heart J102: 846–857.

    Article  Google Scholar 

  19. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J117: 211–221.

    Article  Google Scholar 

  20. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: evidence for the „hibernating myocardium". J Am Coll Cardiol 8:1467–1470.

    Article  PubMed  CAS  Google Scholar 

  21. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 66:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  22. Sayten JJ, Peirce G, Katcher AH et al. (1961) Correlation of intramyocardial electrocardiograms with Polarographie oxygen and contractility in the nonischemic and regionally ischemic left ventricle. Circ Res 9:1268–1279.

    Google Scholar 

  23. Arnold JMO, Braunwald E, Sandor T (1985) Inotropic stimulation of reperfused myocardium with dopamine: effects of infarct size and myocardial function. J Am Coll Cardiol 6: 1036–1044.

    Article  Google Scholar 

  24. Finkel MS, Oddis CV, Hattler BG et al. (1994) Myocardial ischemia, stunning and hibernation: Blood flow, metabolism and pathophysiology mechanism. In: Iskandrian AS, Van der Wall EE (eds) Myocardial viability: detection and clinical relevance. Kluwer, Amsterdam, pp 5–18.

    Chapter  Google Scholar 

  25. Schoeder H, Friedrich M, Topp H (1993) Myocardial viability: What do we need? Eur J Nucl Med 20: 792–803.

    Article  PubMed  CAS  Google Scholar 

  26. Iskandrian AS, Van der Wall EE (1994) When is myocardial viability a clinical relevant issue? In: Iskandrian AS, Van der Wall EE (eds) Myocardial viability: detection and clinical relevance. Kluwer, Amsterdam, pp 179–193.

    Chapter  Google Scholar 

  27. Kern MJ, Flynn MS (1994) Approach to the assessment of myocardial viability in the cardiac catheterization laboratory. In: Iskandrian AS, Van der Wall EE (eds) Myocardial viability: detection and clinical relevance. Kluwer, Amsterdam, pp 141–161.

    Chapter  Google Scholar 

  28. Kaul S (1994) Echocardiographic assessment of myocardial viability. In: Iskandrian AS, Van der Wall EE (eds) Myocardial viability: detection and clinical relevance. Kluwer, Amstredam, pp 71–102.

    Chapter  Google Scholar 

  29. Barilla F, Gheorgiade M, Alam M et al. (1991) Low–dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularisation. Am Heart J 122:1522–1531.

    Article  PubMed  CAS  Google Scholar 

  30. Marzullo P, Parodi O, Reisenhofer B et al. (1993) Value of rest thallium–20i/technetium–99m sestamibi scans and dobutamine echocardiography for detection of myocardial viability. Am J Cardiol 71:166–172.

    Article  PubMed  CAS  Google Scholar 

  31. Pierard LA, De-Landsheere CM, Berthe C et al. (1990) Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 15:1021–1031.

    Article  PubMed  CAS  Google Scholar 

  32. Van der Wall EE, Vliegen HW (1994) Magnetic resonance techniques for the assessment of myocardial viability. In: Iskandrian AS, Van der Wall EE (eds) Myocardial viability: detection and clinical relevance. Kluwer, Amsterdam, pp 103–140.

    Chapter  Google Scholar 

  33. Schwaiger M, Hicks R (1991) The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 32: 565–578.

    PubMed  CAS  Google Scholar 

  34. Gould KL (1991) PET perfusion imaging and nuclear cardiology. J Nucl Med 32: 579–606.

    PubMed  CAS  Google Scholar 

  35. Bentrup A, Claus G, Otto HJ et al. (1996) Kombinierte Ischämie- und Vitalitätsdiagnostik mit Tc-99m-MIBI, Gated SPECT und Arbutamin. Nucl Med 35: A45 (Abstract).

    Google Scholar 

  36. Brunken R, Tillisch J, Schwaiger M et al. (1986) Regional perfusion, glucose metabolism and wall motion in patients with chronic electrocardiographic Q-wave infarctions: evidence for persistance of viable tissue in some infarct regions by positron emission tomography. Circulation 73: 951–963.

    Article  PubMed  CAS  Google Scholar 

  37. Brunken R, Schwaiger M, Grover-McKay M et al. (1987) Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 10: 557–567.

    Article  PubMed  CAS  Google Scholar 

  38. Kiat H, Berman DS, Maddahi J et al. (1988) Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability J Am Coll Cardiol 12:1456–1463.

    Google Scholar 

  39. Yang LD, Berman DS, Kiat H et al. (1989) The frequency of late reversibility in SPECT thallium-201 stress redistribution studies. J Am Coll Cardiol 15: 334–340.

    Article  Google Scholar 

  40. Dilsizian V, Rocco TP, Freedman NM et al. (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146.

    Article  PubMed  CAS  Google Scholar 

  41. Ohtani H, Tamaki N, Yonekura Y et al. (1990) Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Coll Cardiol 66: 394–399.

    CAS  Google Scholar 

  42. Tamaki N, Ohtani H, Yonekura Y et al. (1990) Significance of fill-in after thallium-201 reinjection following delayed imaging: comparison with regional wall motion and angiographic findings. J Nucl Med 31:1617–1623.

    PubMed  CAS  Google Scholar 

  43. Dilsizian V, Smeltzer WR, Freedman NM et al. (1991) Thallium reinjection after stress-redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium? Circulation 83:1247–1255.

    PubMed  CAS  Google Scholar 

  44. Kiat H, Friedman JD, Wang FP et al. (1991) Frequency of late reversibility in stress-redistribution thallium-201 SPECT using an early reinjection protocol. Am Heart J122: 613–619.

    Article  Google Scholar 

  45. van Eck-Smit BL, van der Wall EE, Kuijper AF et al. (1993) Immediate thallium-201 reinjection following stress imaging: a time-saving approach for detection of myocardial viability. JNucl Med 34: 737–743.

    Google Scholar 

  46. Schäfers M, Matheja P, Hasfeld M et al. (1996) The clinical impact of thallium-201 reinjection for the detection of myocardial hibernation. Eur J Nucl Med 23: 407–413.

    Article  PubMed  Google Scholar 

  47. Bonow RO, Dilsizian V, Cuoculo A et al. (1991) Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-Fluorodeoxyglucose. Circulation 83: 26–37.

    PubMed  CAS  Google Scholar 

  48. Medrano R, Mahmarian JJ, Verani MS (1993) Nitroglycerin before reinjection of thallium-201 enhances detection of reversible hypoperfusion via collateral blood flow. A randomized double blind, parallel, placebo-controlled study. J Am Coll Cardiol 21: 221A (Abstract).

    Google Scholar 

  49. Burns RJ, Wright LM, Lumsden CH et al. (1993) Hibernating myocardium: detection by rest 201Tl-infusion SPECT. Circulation 88:1534 (Abstract).

    Google Scholar 

  50. Mester J, Kosa I, Lupkovics G et al. (1993) Prospective evaluation of thallium-201 reinjection in single-vessel coronary patients undergoing coronary bypass surgery. Eur J Nucl Med 20:213–218.

    Article  PubMed  CAS  Google Scholar 

  51. Pace L, Cuocolo A, Marzullo P et al. (1995) Reverse redistribution in resting thallium-201 myocardial scintigraphy in chronic coronary artery disease: an index of myocardial viability. J Nucl Med 36:1968–1973.

    PubMed  CAS  Google Scholar 

  52. Soufer R, Dey HM, Lawson AJ et al. (1995) Relationship between reverse redistribution on planar thallium scintigraphy and regional myocardial viability: a correlative PET study. J Nucl Med 36:180–187.

    PubMed  CAS  Google Scholar 

  53. Ragosta M, Beller GA, Watson DD et al. (1993) Quantitative planar rest redistribution 201T1 imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 87:1630–1641.

    PubMed  CAS  Google Scholar 

  54. Beller GA, Ragosta M, Watson DD et al. (1992) Myocardial thallium-201 scintigraphy for assessment of viability in patients with severe left ventricular dysfunction. Am J Cardiol 70: 18E–22E.

    Article  PubMed  CAS  Google Scholar 

  55. Bull U, Altehöfer C (1993) Die Tl-201 Myokardszintigraphie (1974–1992): Vom Perfusionsdefekt zum Vitalitätsnachweis. Nucl Med 32:1–5.

    CAS  Google Scholar 

  56. Altehoefer C, Vom Dahl J, Büll U et al. (1994) Comparison of thallium-201 single-photon emission tomography after rest injection and fluorodesoxyglucose positron emission tomo graphy for assessment of myocardial viability in patients with chronic coronary artery disease. Eur J Nucl Med 21: 37–45.

    PubMed  CAS  Google Scholar 

  57. Stirner H, Lukes E, Picker D et al. (1994) Gated SPECT mit 201-Tl und 99m-Tc MIBI in der klinischen Routine - warum eigentlich nicht? Nuklearmediziner 2: 99–112.

    Google Scholar 

  58. Stirner H, Spreng M, Picker D et al. (1992) Vitalitätsbeurteilung mittels der 24h-Redistribution in der quantitativen 201-Tl-Myokardszintigraphie (SPECT) im Vergleich zur klinischen Langzeitkontrolle nach Intervention. Nuklearmediziner 3: 203–212.

    Google Scholar 

  59. Abraham SA, Mirecki FN, Levine D et al. (1995) Myocardial technetium-99m-teboroxime activity in acute coronary artery occlusion and reperfusion: relation to myocardial blood flow and viability. J Nucl Med 36:1062–1068.

    PubMed  CAS  Google Scholar 

  60. Landoni C, Lucignani C, Paolini G et al. (1992) Identification of hibernating myocardium with PET/FDG and SPET/MIBI in patients undergoing coronary artery bypass. Eur J Nucl Med 19: 571 (Abstract).

    Google Scholar 

  61. Marzullo P, Sambuceti G, Parodi O (1992) The role of sestamibi scintigraphy in the radioisotopic assessment of myocardial viability. J Nucl Med 33:1925–1930.

    PubMed  CAS  Google Scholar 

  62. Dondi M, Tartagni F, Fallani F et al. (1993) A comparison of rest sestamibi and rest redistribution thallium single photon emission tomography: possible implications for myocardial viability detection in infarcted patients. Eur J Nucl Med 20: 26–31.

    Article  PubMed  CAS  Google Scholar 

  63. Altehoefer C, Kaiser H-J, Dörr R et al. (1992) Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in 99mTc-MIBI SPET: a comparative study in patients with coronary artery disease. Eur J Nucl Med 19: 334–342.

    Article  PubMed  CAS  Google Scholar 

  64. Cuocolo A, Pace L, Ricciardelli B et al. (1992) Identification of viable myocardium in patients with chronic coronary artery disease. Comparison of thallium-201 scintigraphy with reinjection and technetium-99m methoxyisobutyl isonitrile. J Nucl Med 33: 505–511.

    PubMed  CAS  Google Scholar 

  65. Altehoefer C, vom Dahl J, Biedermann M et al. (1994) Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18-FDG PET. J Nucl Med 35: 569–574.

    PubMed  CAS  Google Scholar 

  66. Altehoefer C, vom Dahl J, Messmer B et al. (1996) Fate of the resting perfusion defect as assessed with technetium-99m methoxy-isobutyl-isonitrile single-photon emission computed tomography after successful revascularisation in patients with healed myocardial infarction. Am J Cardiol 77: 88–92.

    Article  PubMed  CAS  Google Scholar 

  67. Dilsizian V, Arrighi JA, Diodati JG et al. (1994) Myocardial viability in patients with healed coronary artery disease: comparison of 99mTc-sestamethoxy-isobutyl-isonitrile with thallium-201 reinjection and [i8F]fluorodeoxyglucose. Circulation 89: 578–587.

    PubMed  CAS  Google Scholar 

  68. Maurea S, Cuocolo A, Soricelli A et al. (1995) Myocardial viability index in chronic coronary artery disease: technetium-99m-methoxy isobutyl isonitrile redistribution. J Nucl Med 36: 1953–1960.

    PubMed  CAS  Google Scholar 

  69. Maurea S, Cuocolo A, Soricelli A et al. (1995) Enhanced detection of viable myocardium by technetium-99m-MIBI imaging after nitrate administration in chronic coronary artery dis¬ease. J Nucl Med 36:1945–1952.

    PubMed  CAS  Google Scholar 

  70. Bisi G, Sciagra R, Santoro GM et al. (1995) Technetium-99m-sestamibi imaging with nitrate infusion to detect viable myocardium and predict postrevascularisation recovery. J Nucl Med 36:1994–2000.

    PubMed  CAS  Google Scholar 

  71. Worsley DF, Fung AY, Burns RJ (1995) Identification of viable myocardium with technetium-99m-MIBI infusion. J Nucl Med 36:1037–1039.

    PubMed  CAS  Google Scholar 

  72. Rigo P, Benoit T, Braat S (1994) The role of technetium-99m sestamibi in the evaluation of myocardial viability. In: Iskandrian AS, Van der Wall EE (eds) Myocardial viability: detection and clinical relevance. Kluwer, Amsterdam, pp 39–52.

    Chapter  Google Scholar 

  73. Matsunari I, Fujino S, Taki J et al. (1995) Myocardial viability assessment with technetium-99m-tetrofosmin and thallium-201 reinjection in coronary artery disease. J Nucl Med 36: 1961–1967.

    PubMed  CAS  Google Scholar 

  74. Matsuo H, Watanabe S, Murata I et al. (1996) Comparative study of resting Tc-99m- sestamibi, Tc-99m-tetrofosmin and stress-reinjection 201-thallium scintigraphy for myocardial viability assessment. J Nucl Med 37: 26P (Abstract).

    Google Scholar 

  75. Nishimura T, Nobuyoshi M (1996) A multicenter trial of Tc-99m tetrofosmin myocardial SPECT assessment of acute thrombolysis, elective coronary angioplasty and myocardial via-bilty. J Nucl Med 37: 26P (Abstract).

    Google Scholar 

  76. Go RT, Maclntyre WJ, Saha GB et al. (1995) Hibernating myocardium versus scar: severity of irreversible decreased myocardial perfusion in prediction of tissue viability. Radiology 194: 151–155.

    PubMed  CAS  Google Scholar 

  77. Lucignani G, Paolini G, Landoni C et al. (1992) Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 19: 874–881.

    Article  PubMed  CAS  Google Scholar 

  78. Bull U, Fouroutan Y, Hellwig D et al. (1995) Vergleich von relativer 18FDG-Aufnahme mit metabolischer Rate (MRGlukose) im Myokard bei KHK, klassifiziert mit 99mTc-MIBI. Nucl Med 34: 223–228.

    CAS  Google Scholar 

  79. Vom Dahl J, Altehoefer C, Büchin P et al. (1995) Langzeitverlauf bei Patienten mit koronarer Herzkrankheit: Nuklearmedizinische Vitalitätsdiagnostik und Prognose. Z Kardiol 84 (Suppl) 1: 3 (Abstract).

    Google Scholar 

  80. Burt RW, Perkins OW, Oppenheim BE et al. (1995) Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for detection of myocardial viabi¬lity. J Nucl Med 36:176–179.

    PubMed  CAS  Google Scholar 

  81. Delbeke D, Videlefsky S, Patton JA et al. (1995) Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-MIBI/fluo-rine-18-FDG. J Nucl Med 36: 2110–2119.

    PubMed  CAS  Google Scholar 

  82. Kuikka JT, Mussalo H, Hietakorpi S et al. (1992) Evaluation of myokardial viability with tech-netium-99m hexakis-2-methoxyisobutyl isonitrile and iodine-123 phenylpentadecanoic acid and single photon emission tomography. Eur J Nucl Med 19: 882–889.

    Article  PubMed  CAS  Google Scholar 

  83. Tamaki N, Tadamura E, Kawamoto M et al. (1995) Decreased uptake of iodinated branched fatty acid analog indicates metabolic alterations in ischemic myocardium. J Nucl Med 36:1974–1980.

    PubMed  CAS  Google Scholar 

  84. Hansen CL, Heo J, Oliner C et al. (1995) Prediction of improvement in left ventricular function with iodine-123-IPPA after coronary revascularisation. J Nucl Med 36:1987–1993.

    PubMed  CAS  Google Scholar 

  85. Knapp FF, Franken P, Kropp J (1995) Cardiac SPECT with iodine-123-labeled fatty acids: evaluation of myocardial viability with BMIPP. J Nucl Med 36:1022–1030.

    PubMed  CAS  Google Scholar 

  86. Franken PR, Dendale P, De Geeter F et al. (1996) Prediction of functional outcome after myocardial infarction using BMIPP and sestamibi scintigraphy. J Nucl Med 37: 718–22.

    PubMed  CAS  Google Scholar 

  87. Tamaki N, Tadamura E, Kudoh T et al. (1996) Prognostic value of iodine-123 labelled BMIPP fatty acid analogue imaging in patients with myocardial infarction. Eur J Nucl Med 23: 272–279.

    Article  PubMed  CAS  Google Scholar 

  88. Reske SN (1996) Viability as seen with radiolabelled fatty acids - a new approach to a challenging problem. Eur J Nucl Med 21: 279–282.

    Article  Google Scholar 

  89. Bergmann SR (1994) Delineation of viable myocardium with metabolic imaging. In: Iskan-drian AS, Van der Wall EE (eds) Myocardial viability: detection and clinical relevance. Kluwer, Amsterdam, pp 53–70.

    Chapter  Google Scholar 

  90. Yamamoto Y, de Silva R, Rhodes CG et al. (1992) A new strategy for the assessment of viable myocardium and regional blood flow using 150-water and dynamic positron emission tomography. Circulation 86:167–178.

    PubMed  CAS  Google Scholar 

  91. Schelbert HR, Henze E, Sochor H et al. (1986) Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J111:1055–1064.

    Article  Google Scholar 

  92. Marshall RC, Tillisch JH, Phelps ME et al. (1983) Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose, and N-13-ammonia. Circulation 67: j66–jj8.

    Google Scholar 

  93. Hör G (1996) What is the current status of quantification and nuclear medicine in cardiology? Eur J Nucl Med 23: 815–851.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stirner, H. (1997). “Hibernating myocardium” — winterschlafendes Myokard: klinische Bedeutung. In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Herzens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60621-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60621-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64479-5

  • Online ISBN: 978-3-642-60621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics