Skip to main content

Myokard-SPECT bei der Abklärung der Wirksamkeit von PTCA-Interventionen und koronaren Bypassoperationen

  • Chapter
Single-Photon-Emissions-Computertomographie (SPECT) des Herzens
  • 42 Accesses

Zusammenfassung

Die Entwicklung der Koronarangiographie durch Sones u. Shirey [1] während der 6oer Jahre hat dazu geführt, daß ein direkter Nachweis stenosierender arteriosklerotisch veränderter Koronarien möglich wurde. Die Angiographie bildete somit die Grundlage der Koronarchirurgie. Die erste Operation einer koronaren Herzkrankheit (KHK) durch eine Anastomose der A. mammaria interna an die linke Koronararterie wurde im Jahr 1964 von Kolesov u. Potashov [2] in Leningrad durchgeführt. Bald danach verwandten Favaloro [3] und Effler im Jahr 1967 die Saphenavenen als Conduit und führten erstmalig die Techniken der aortokoronaren Venenbypassoperation (ACVB) ein. Anfangs wurden diese Operationen in erster Linie zur Linderung der Symptome durchgeführt, später auch zur Verbesserung der regionalen Ventrikelfunktion in Ruhe und unter Belastung, was zu einer Verbesserung der Patientenprognose führte. Die ACVB-Operationen wurden in den letzten Jahren zunehmend durchgeführt und haben das Schicksal der Patienten mit KHK grundlegend geändert [4–6]. Patienten mit schwerem Krankheitsbild einer KHK stellen die Hauptnutznießer der operativen Maßnahme dar. Eine optimale Funktionsverbesserung ist abhängig von einer kompletten Myokardrevaskularisation, unter Vermeidung perioperativer Komplikationen oder postoperativer Reverschlüsse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Sones FM Jr, Shirey EK (1962) Cine coronary arteriography. Mod Concepts Cardiovasc Dis 31: 735–738.

    PubMed  Google Scholar 

  2. Kolesov VI, Potashov LV (1965) Surgery of the coronary arteries. Exp Chir Anaesth 10: 3–8.

    CAS  Google Scholar 

  3. Favaloro RG (1969) Saphenous vein graft in the surgical treatment of coronary artery disease: Operative technique. J Thorac Cardiovasc Surg 58:178–185.

    PubMed  CAS  Google Scholar 

  4. CASS - Principle investigators and associates, Coronary Artery Surgery Study (CASS) (1983) A randomized trial of coronary artery bypass surgery. Survival data. Circulation 68:939–950.

    Google Scholar 

  5. CABRI, Trial Participants (1995) First-year results of CABRI (Coronary Angioplasty versus Bypass Revascularization Investigation). Lancet 346:1179–1184.

    Article  Google Scholar 

  6. Pocock SJ, Henderson RA, Rickards AF et al. (1995) Meta-analysis of randomised trials comparing coronary angioplasty with bypass surgery. Lancet 346:1184–1189.

    Article  PubMed  CAS  Google Scholar 

  7. Grüntzig AR, Senning A, Siegenthaler W (1979) Nonoperative dilatation of coronary-artery stenosis. Percutaneous coronary angioplasty. N Engl J Med 301: 61–68.

    Google Scholar 

  8. Meier B (1996) Primäre Ballondilatation bei jeder Koronarstenose? Z Kardiol 85(Suppl 1): 9–15.

    PubMed  Google Scholar 

  9. Lambert M, Bonan R, Cote G et al. (1987) Early results, complications and restenosis rates after multilesion and multivessel percutaneous transluminal coronary angioplasty. Am J Cardiol 60: 788–791.

    Article  PubMed  CAS  Google Scholar 

  10. Vandormael M, Deligonul U, Kern M et al. (1987) Multilesion coronary angioplasty: clinical and angiographic follow-up. J Am Coll Cardiol 10: 246–252.

    Article  PubMed  CAS  Google Scholar 

  11. Ryan T, Faxon D, Gunnar R et al. (1988) The American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures. Subcommittee on Percutaneous Transluminal Coronary Angioplasty. Guidelines for percutaneous transluminal coronary angioplasty. Circulation 78: 486–502.

    CAS  Google Scholar 

  12. Ryan TJ, Bauman WB, Kennedy JW et al. (1993) Guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Percutaneous Transluminal Coronary Angioplasty). J Am Coll Cardiol 22: 2033–2054.

    Article  Google Scholar 

  13. Landau C, Lange R, Hillis L (1994) Percutaneous transluminal coronary angioplasty N Engl J Med 330: 981–992.

    CAS  Google Scholar 

  14. Hombach V, Waltenberger J, Voisard R et al. (1995) Rezidivstenose nach Koronarangioplastie. Klinische, zellbiologische und molekulare Aspekte. Z Kardiol 84: 5–21.

    PubMed  CAS  Google Scholar 

  15. IP J, Fuster V, Badimon L et al. (1990) Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 7:1667–1687.

    Article  Google Scholar 

  16. Schwartz R, Holmes D, Topol E (1992) The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J Am Coll Cardiol 20:1284–1293.

    Article  PubMed  CAS  Google Scholar 

  17. Hanke H, Strohschneider T, Oberhoff M et al. (1990) Time course of smooth muscle proliferation in the intima and media of arteries following experimental angioplasty. Circ Res 67: 651–659.

    PubMed  CAS  Google Scholar 

  18. Epstein S, Speir E, Unger E et al. (1994) The basis of molecular strategies for treating coronary restenosis after angioplasty. J Am Coll Cardiol 23:1278–1288.

    Article  PubMed  CAS  Google Scholar 

  19. Raugi G, Mullen J, Bark D et al. (1990) Thrombospondin deposition in rat carotid artery injury Am J Pathol 137:179–185.

    CAS  Google Scholar 

  20. Riessen R, Henley C, Brogi E et al. (1994) Hyaluronic acid is a characteristic constituent of the extracellular matrix in human restenotic coronary and peripheral arteries. Eur Heart J i5(Suppl): 247.

    Google Scholar 

  21. Riessen R, Pastore C, Henley C et al. (1994) Deposition von Hyaluronsäure nach experimenteller Gefäßverletzung in Rattencarotiden. Z Kardiol 83(Suppl 1): 211.

    Google Scholar 

  22. Riessen R, Isner J, Blessing E et al. (1994) Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic human coronary arteries. Am J Pathol 144: 962–974.

    PubMed  CAS  Google Scholar 

  23. Haude M, Erbel R, Issa H et al. (1993) Quantitative analysis of elastic recoil after balloon angioplasty and after intracoronary implantation of balloon-expandable Palmaz-Schatz stents. J Am Coll Cardiol 21: 26–34.

    Article  PubMed  CAS  Google Scholar 

  24. Isner J (1994) Vascular remodeling. Circulation 89: 2937–2941.

    PubMed  CAS  Google Scholar 

  25. Nobuyoshi M, Kimura T, Nosaka H et al. (1988) Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol 12: 616–623.

    PubMed  CAS  Google Scholar 

  26. Serruys P, Luijten H, Beatt K et al. (1988) Incidence of restenosis after successful coronary angioplasty: a time related phenomenon. A quantitative angiographic study in 342 consecutive patients at one, two, three and four months. Circulation 77: 361–371.

    Article  PubMed  CAS  Google Scholar 

  27. Fischman D, Leon M, Bairn D et al. (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 331: 496–501.

    Article  PubMed  CAS  Google Scholar 

  28. Serruys P, de Jaegere P, Kiemeneij F et al. (1994) A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331: 489–495.

    Article  PubMed  CAS  Google Scholar 

  29. Maresta A, Balducelli M, Cantini L et al. (1994) Trapidil (triazolopyrimidine), a platelet-derived growth antagonist, reduces restenosis after percutaneous transluminal angioplasty. Circulation 90: 2710–2715.

    PubMed  CAS  Google Scholar 

  30. Nabel E, Plautz G, Boyce F et al. (1989) Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 244:1342–1344.

    Article  PubMed  CAS  Google Scholar 

  31. Nabel E (1995) Gene therapy for cardiovascular disease. Circulation 91: 541–548.

    PubMed  CAS  Google Scholar 

  32. Nabel E, Plautz G, Nabel G (1990) Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249:1285–1288.

    Article  PubMed  CAS  Google Scholar 

  33. Waksman R, Robinson K, Crocker I et al. (1995) Endovascular low-dose irradiation inhibits neointima formation after coronary artery balloon injury in swine: a possible role for radiation therapy in restenosis prevention. Circulation 91:1533–1539.

    PubMed  CAS  Google Scholar 

  34. Wiedermann J, Marboe C, Amols H et al. (1994) Intracoronary irradiation markedly reduces restenosis after balloon angioplasty in a porcine model. J Am Coll Cardiol 23:1491–1498.

    Article  PubMed  CAS  Google Scholar 

  35. Wiedermann J, Marboe C, Amol H et al. (1995) Intracoronary irradiation markedly reduces neointimal proliferation after balloon angioplasty in swine: Persistent benefit at 6-month follow-up. J Am Coll Cardiol 25:1451–1456.

    Article  PubMed  CAS  Google Scholar 

  36. Hehrlein C, Gollan T, Dönges K et al. (1995) Low dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 92: 1570–1575.

    PubMed  CAS  Google Scholar 

  37. Gonschior P, Erdemci A, Gerheuser F et al. (1991) Selective hematoporphyrin derivate (HMD) application in arterial vessels using a porous balloon catheter to high-dose systemic administration. Z Kardiol 80: 738–745.

    PubMed  CAS  Google Scholar 

  38. LaMuraglia G, Ortu P, Flotte T et al. (1993) Chloroaluminium sulfonated phthalocyanine partitioning in normal and intimai hyperplastic artery in the rat. Implications for photodynamic therapy. Am J Pathol 142:1898–1905.

    CAS  Google Scholar 

  39. March K, Patton B, Wilensky R et al. (1993) 8-methoxypsoralen and longwave ultraviolet irradiation are a novel antiproliferative combination for vascular smooth muscle. Circulation 87: 184–191.

    PubMed  CAS  Google Scholar 

  40. Ortu P, LaMuraglia G, Roberts G et al. (1992) Photodynamic therapy of arteries. A novel approach for the treatment of experimental intimai hyperplasia. Circulation 85:1189–1196.

    CAS  Google Scholar 

  41. Lindsay J, Hong MK, Pinnow EE et al. (1996) Effects of endoluminal coronary stents on the frequency of coronary artery bypass grafting after unsuccessful percutaneous transluminal coronary revascularization. Am J Cardiol 77: 647–649.

    Article  PubMed  CAS  Google Scholar 

  42. Loop F, Lytle D, Cosgrove D et al. (1986) Influence of the internal mammary artery graft on 10 year survival and other cardiac events. N Engl J Med 314:1–6.

    Article  PubMed  CAS  Google Scholar 

  43. Edwards F, Clark R, Schwartz M (1994) Impact of internal mammary artery conduits on operative mortality in coronary revascularization. Ann Thorac Surg 57: 27–32.

    Article  PubMed  CAS  Google Scholar 

  44. Gray R, Matloff J, Conklin C et al. (1982) Perioperative myocardial infarction: late clinical course after coronary artery bypass surgery. Circulation 66:1185.

    Article  PubMed  CAS  Google Scholar 

  45. Burdine J, DePuey E, Orzan F et al. (1979) Scintigraphic, electrocardiographic, and enzymatic diagnosis of perioperative myocardial infarction in patients undergoing myocardial revascularisation. J Nucl Med 20: 711–714.

    PubMed  CAS  Google Scholar 

  46. Zeff R, Kongtahworn C, Iannone L et al. (1988) Internal mammary artery versus saphenous vein graft to the left anterior descending coronary: prospective randomized study with 10 year follow-up. Ann Thorac Surg 45: 533–536.

    Article  PubMed  CAS  Google Scholar 

  47. Puga J (1995) The use of the internal mammary artery for revascularization of the left anterior descending coronary artery. Eur Heart J16(Suppl. E): 21–25.

    Google Scholar 

  48. Pomar J (1995) The use of autologous saphenous vein grafts for isolated left anterior descending coronary artery revascularization. Eur Heart J16(Suppl. E): 26–28.

    Google Scholar 

  49. Vajtai P, Ravichandran P, Fessler C et al. (1992) Inadequate internal mammary graft as a cause of post-operative ischemia: diagnosis and management. Eur J Cardio-thorac Surg 6:603–608.

    Article  CAS  Google Scholar 

  50. Lytle B, Loop F, Cosgrove D et al. (1985) Internal mammary vs saphenous vein grafts for coronary revascularization. Results of serial angiographic studies. J Thorac Cardiovasc Surg 89: 248–258.

    CAS  Google Scholar 

  51. Boylan M, Lytle B, Loop F et al. (1994) Surgical treatment of the isolated left anterior descending coronary stenosis. Comparison of left internal mammary artery and venous autograft at 18 to 20 years of follow-up. J Thorac Cardiovasc Surg 107: 657–662.

    PubMed  CAS  Google Scholar 

  52. Minev P, Notohamiprodjo G, Minami K et al. (1994) Investigation of myocardial fatty acid metabolism to assess the improvement of myocardial function after revascularisation with an IMA or vein bypass. Thorac Cardiovasc Surgeon 42(Suppl. 1): 104–105.

    Google Scholar 

  53. Pym J, Brown P, Charrette E et al. (1987) Gastroepiploic to coronary anastomosis: a viable alternative bypass graft. J Thorac Cardiovasc Surg 94: 256–259.

    PubMed  CAS  Google Scholar 

  54. Suma H, Fukumoto H, Takeuchi A (1987) Coronary artery bypass grafting by utilizing in situ right gastroepiploic artery: basic study and clinical application. Ann Thorac Surg 44: 394–397.

    Article  PubMed  CAS  Google Scholar 

  55. Carter M (1987) The use of the right gastroepiploic artery in coronary artery bypass grafting. Aust NZ J Surg 57: 317–321.

    Article  CAS  Google Scholar 

  56. Lytle B, Cosgrove D, Ratliff N et al. (1989) Coronary artery bypass grafting with the right gastroepiploic artery. J Thorac Cardiovasc Surg 97: 826–831.

    PubMed  CAS  Google Scholar 

  57. Mills N, Everson C (1989) Right gastroepiploic artery: a third arterial conduit for coronary artery bypass. Ann Thorac Surg 47: 706–711.

    Article  PubMed  CAS  Google Scholar 

  58. Vekkala K, Jarvinen A, Keto P et al. (1989) Right gastroepiploic artery as a coronary bypass graft. Ann Thorac Surg 47: 716–719.

    Article  Google Scholar 

  59. Suma H, Wanibuchi Y, Terada Y et al. (1993) The right gastroepiploic artery graft: clinical and angiographic midterm results in 200 patients. J Thorac Cardiovasc Surg 105: 615–623.

    PubMed  CAS  Google Scholar 

  60. Grandjean J, Boonstra P, denHeyer P et al. (1994) Arterial revascularization with the right gastroepiploic and internal mammary arteries in 300 patients. J Thorac Cardiovasc Surg 107: 1309–1316.

    PubMed  CAS  Google Scholar 

  61. Pym J, Brown P, Pearson M et al. (1995) Right Gastroepiploic-to-Coronary Artery Bypass. The first decade of use. Circulation 92(Suppl. II): 45–49.

    Google Scholar 

  62. Mirhoseini M, Muckerheide M, Cayton M (1982) Transventricular revascularization by laser. Laser Surg Med 2:187–198.

    Article  CAS  Google Scholar 

  63. Mirhoseini M, Cayton M, Shelgikar S et al. (1986) Laser myocardial revascularization. Laser Surg Med 6: 459–461.

    Article  CAS  Google Scholar 

  64. Okada M, Ikuta H, Shimizu K et al. (1986) Alternative method of myocardial revascularization by laser: experimental and clinical study. Kobe J Med Sci 32:151–161.

    PubMed  CAS  Google Scholar 

  65. Hardy R, FW J, Millard R et al. (1990) Regional myocardial blood flow and cardiac mechanics in dog hearts with CO2 laser-induced intramyocardial revascularization. Basic Res Cardiol 85:179–197.

    Article  PubMed  CAS  Google Scholar 

  66. Landreneau R, Nawarawong W, Laughlin H et al. (1991) Direct CO2 laser revascularization of the myocardium. Laser Surg Med 11: 35–42.

    Article  CAS  Google Scholar 

  67. Jeevanandam V, Auteri J, Oz M et al. (1991) Myocardial revascularization by laser-induced channels. Surg Forum 41: 225–227.

    Google Scholar 

  68. Whittaker P, Kloner R, Przyklenk K (1993) Laser-mediated transmural myocardial channels do not salvage acutely ischemic myocardium. J Am Coll Cardiol 22: 302–309.

    Article  PubMed  CAS  Google Scholar 

  69. Yano O, Bielefeld M, Jeevanandam V (1993) Prevention of acute regional ischemia with endocardial laser channels. Ann Thorac Surg 56: 46–53.

    Article  PubMed  CAS  Google Scholar 

  70. Cooley D, Frazier O, Kadipasaoglu K et al. (1994) Transmyocardial laser revascularization: anatomic evidence of long-term channel patency Tex Heart Inst J 21: 220–224.

    CAS  Google Scholar 

  71. Horvath KA, Smith WJ, Laurence RG et al. (1995) Recovery and viability of an acute myocardial infarct after transmyocardial laser revascularization. J Am Coll Cardiol 25: 258–263.

    Article  PubMed  CAS  Google Scholar 

  72. Frazier O, Cooley DA, Kadipasaoglu KA et al. (1995) Myocardial revascularization with laser. Preliminary findings. Circulation 92(Suppl. II): 58–65.

    Google Scholar 

  73. Mirhoseini M, Fischer J, Cayton M (1983) Myocardial revascularization by laser. Laser Surg Med 3: 241–245.

    Article  CAS  Google Scholar 

  74. Horvath KA, Mannting F, Cohn LH (1994) Improved myocardial perfusion and relief of angina after transmyocardial laser revascularization. Circulation 9o(Abstr.): I–640.

    Google Scholar 

  75. Thies W, Notohamiprodjo G, Olsen E et al. (1994) Reversible and non-reversible congestive cardiomyopathy in childhood - differentiation by in vivo assessment of left ventricular free fatty acid extraction, in: Thoracic organ transplantation; M. Körner, H. Posival, and R. Körfer (eds). Elsevier. Amsterdam, New York, Oxford, Shannon, Tokyo, pp 287–296.

    Google Scholar 

  76. Schlant R, Friesinger G, Leonard J et al. (1990) Clinical competence in exercise testing. J Am Coll Cardiol 16:1061–1065.

    Article  PubMed  CAS  Google Scholar 

  77. Detre K, Holmes Jr D, Holubkov R et al. (1990) Incidence and consequences of periprocedural occlusion: the 1985–1986 National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronarangioplasty Registry. Circulation 82: 739–750.

    Article  PubMed  CAS  Google Scholar 

  78. Ellis S, Roubin G, King III S et al. (1988) Angiographic and clinical predictors of acute closure after native vessel coronary angioplasty. Circulation 77: 372–379.

    Article  PubMed  CAS  Google Scholar 

  79. de Feyter P, van den Brand M, Laarman G et al. (1991) Acute coronary artery occlusion during and after percutaneous transluminal coronary angioplasty: frequency, prediction, clinical course, management, and follow-up. Circulation 83: 927–936.

    PubMed  Google Scholar 

  80. Gaul G, Hollman J, Simpfendorfer C et al. (1989) Acute occlusion in multiple lesion coronary angioplasty: frequency and management. J Am Coll Cardiol 13: 283–288.

    Article  PubMed  CAS  Google Scholar 

  81. Kuntz R, Piana R, Pomerantz R et al. (1992) Changing evidence and management of abrupt closure following coronary intervention in the new device era. Cathet Cardiovasc Diagn 27:183–190.

    Article  PubMed  CAS  Google Scholar 

  82. Simpfendorfer C, Belardi J, Bellamy G et al. (1987) Frequency, management, and follow-up of patients with acute coronary occlusions after percutaneous transluminal coronary angioplasty. Am J Cardiol 59: 267–269.

    Article  PubMed  CAS  Google Scholar 

  83. Ellis S, Roubin G, King III S et al. (1988) In-hospital cardiac mortality after acute closure after coronary angioplasty: analysis of risk factors from 8207 procedures. J Am Coll Cardiol 11: 211–216.

    Article  PubMed  CAS  Google Scholar 

  84. Schroeder E, Marchandise B, De Coster P et al. (1989) Detection of restenosis after coronary angioplasty for single-vessel disease: how reliable are exercise electrocardiography and scintigraphy in asymptomatic patients? Eur Heart J 10(Suppl G): 18–21.

    Google Scholar 

  85. Fioretti P, Pozzoli M, Ilmer B et al. (1992) Exercise echocardiography versus thallium-201 SPECT for assessing patients before and after PTCA. Eur Heart J13: 213–219.

    Google Scholar 

  86. Pirelli S, Danzi G, Alberti A et al. (1991) Comparison of usefulness of high-dose dipyridamole echocardiography and exercise electrocardiography for detection of asymptomatic restenosis after coronary angioplasty. Am J Cardiol 67:1335–1338.

    Article  PubMed  CAS  Google Scholar 

  87. DePuey E, Roubin G, Cloninger K et al. (1988) Correlation of transluminal coronary angioplasty parameters and quantitative thallium-201 tomography. J Invasive Cardiol 1: 40–50.

    Google Scholar 

  88. Danchin N, Haouzi A, Amor M et al. (1988) Sustained improvement in myocardial perfusion four to six years after PTCA in patients with a satisfactory angiographic result, six months after the procedure. Eur Heart J 9: 454–457.

    PubMed  CAS  Google Scholar 

  89. Wilson R, Johnson M, Marcus M et al. (1988) The effect of coronary angioplasty on coronary flow reserve. Circulation 77: 873–885.

    Article  PubMed  CAS  Google Scholar 

  90. Uren N, Crake T, Lefroy D et al. (1993) Delayed recovery of coronary resistive vessel function after coronary angioplasty. J Am Coll Cardiol 21: 612–621.

    Article  PubMed  CAS  Google Scholar 

  91. Haude M, Erbel R, Issa H et al. (1993) Subacute thrombotic complications after intracoronary implantation of Palmaz-Schatz stents. Am Heart J 126:15–22.

    Article  PubMed  CAS  Google Scholar 

  92. Lewis BS, Hardoff R, Merdler A et al. (1995) Importance of immediate and very early postprocedural angiographic and thallium-201 single photon emission computed tomographic perfusion measurements in predicting late results after coronary intervention. Am Heart J130: 425–432.

    Article  Google Scholar 

  93. Klugherz BD, DeAngelo DL, Kim BK et al. (1996) Three-Year clinical follow-up after Palmaz-Schatz stenting. J Am Coll Cardiol 27:1185–1191.

    Article  PubMed  CAS  Google Scholar 

  94. Seggewiß H, Gleichmann U, Faßbender D et al. (1993) Perkutane transluminale Koronarangioplastie bei koronarer Mehrgefäßerkrankung: Klinischer Verlauf in Abhängigkeit vom funktionellen Revaskularisationsgrad. Z Kardiol 82: 504–514.

    PubMed  Google Scholar 

  95. Breisblatt W, Barnes J, Weiland F et al. (1988) Incomplete revascularization in multivessel percutaneous transluminal coronary angioplasty: the role of stress thallium-201 imaging. J Am Coll Cardiol 11:1183–1190.

    Article  PubMed  CAS  Google Scholar 

  96. Bengtson J, Mark D, Honan M et al. (1990) Detection of restenosis after elective percutaneous transluminal coronary angioplasty using exercise treadmill test. Am J Cardiol 65:28–34.

    Article  PubMed  CAS  Google Scholar 

  97. Laarman G, Luijten H, van Zeyl L et al. (1990) Assessment of „silent" restenosis and long term follow-up after successful angioplasty in single vessel coronary artery disease: the value of quantitative exercise electrocardiography and quantitative coronary angiography J Am Coll Cardiol 16: 578–585.

    Google Scholar 

  98. Hultgren N, Shettigar U, Pfeifer J et al. (1977) Acute myocardial infarction and ischaemic injury during surgery for coronary artery disease. Am Heart J 94:146–153.

    Article  PubMed  CAS  Google Scholar 

  99. Pfisterer M, Emmenegger H, Schmitt H et al. (1982) Accuracy of serial myocardial perfusion scintigraphy with thallium-201 for prediction of graft patency early and late after coronary bypass surgery. A controlled prospective study. Circulation 66:1017–1024.

    CAS  Google Scholar 

  100. Ritchie J, Narahara K, Trobaugh G et al. (1977) Thallium-201 myocardial imaging before and after coronary revascularization. Circulation 56: 830–836.

    PubMed  CAS  Google Scholar 

  101. Iskandrian A, Haaz W, Segal R et al. (1982) Exercise thallium-201 scintigraphy in evaluating aortocoronary bypass surgery Chest 80:11–15.

    Google Scholar 

  102. Powelson S, DePuey E, Roubin G et al. (1986) Discordance of coronary angiography and 201-Thallium tomography early after transluminal coronary angioplasty. J Nucl Med 27: 900 (Abstract).

    Google Scholar 

  103. Hardoff R, Shefer A, Gips S et al. (1990) Predicting late restenosis after coronary angiography by very early (12 to 24 h) thallium-201 scintigraphy: implications with regard to mechanism of late coronary restenosis. J Am Coll Cardiol 15:1486–1492.

    Article  PubMed  CAS  Google Scholar 

  104. Breisblatt W, Weiland F, Spaccavento L (1988) Stress thallium-201 imaging after coronary angioplasty predicts restenosis and recurrent symptoms. J Am Coll Cardiol 12:1199–1204.

    Article  PubMed  CAS  Google Scholar 

  105. Wijns W, Serruys P, Simoons M et al. (1985) Predictive value of early maximal exercise test in thallium scintigraphy after successful percutaneous transluminal coronary angioplasty Br Heart J 53:194–200.

    CAS  Google Scholar 

  106. Stuckey T, Burwell L, Nygaard T et al. (1989) Quantitative exercise thallium-201 scintigraphy for predicting angina recurrence after percutaneous transluminal coronary angioplasty. Am J Cardiol 63: 517–521.

    Article  PubMed  CAS  Google Scholar 

  107. Jain A, Mahmarian J, Borges-Neto S et al. (1988) Clinical significance of perfusion defects by thallium-201 single photon emission tomography following oral dipyridamole early after coronary angioplasty. J Am Coll Cardiol 11: 970–976.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin hiedelberg

About this chapter

Cite this chapter

Notohamiprodjo, G. (1997). Myokard-SPECT bei der Abklärung der Wirksamkeit von PTCA-Interventionen und koronaren Bypassoperationen. In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Herzens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60621-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60621-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64479-5

  • Online ISBN: 978-3-642-60621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics