Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 48))

Abstract

Glaciers are huge and slow moving rivers of ice which exist in various parts of the world: Alaska, the Rockies, the Alps, Spitsbergen, China, for example. They drain areas in which snow accumulates, much as rivers drain catchment areas where rain falls. Glaciers also flow in the same basic way that rivers do. Although glacier ice is solid, it can deform by the slow creep of dislocations within the lattice of ice crystals which form the fabric of the ice. Thus, glacier ice effectively behaves like a viscous material, with, however, a very large viscosity: a typical value of ice viscosity is 1 bar year (in the metre-bar-year system of units!). Since 1 bar = 105 Pa, 1 year ≈ 3 × 107 s, this is a viscosity of some 1012 Pa s, about 1015 times that of water. As a consequence of their enormous viscosity, glaciers move slowly - a typical velocity would be in the range 10–100 m y-1 (metres per year), certainly measurable but hardly dramatic. More awesome are the dimensions of glaciers. Depths of hundreds of metres are typical, widths of kilometres, lengths of tens of kilometres. Thus glaciers can have an important effect on the human environment in their vicinity. They are also indirect monitors of climate; for example, many lithographs of Swiss glaciers show that they have been receding since the nineteenth century, a phenomena thought to be due to the termination of the ‘little ice age’ in the middle ages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentley, CR. 1987 Antarctic ice streams: a review. J. Geophys. Res. 92, 8843–8858.

    Article  Google Scholar 

  • Bond, G., and 13 others 1992 Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249.

    Article  Google Scholar 

  • Boulton, G.S. and R.C.A. Hindmarsh 1987 Sediment deformation beneath glaciers: rhe- ology and geological consequences. J. Geophys. Res. 92, 9059–9082.

    Article  Google Scholar 

  • Clarke, G.K.C., U. Nitsan and W.S.B. Paterson 1977 Strain heating and creep instability in glaciers and ice sheets. Revs. Geophys. Space Phys. 15, 235–247.

    Article  Google Scholar 

  • Clarke, G.K.C., S.G. Collins and D.E. Thompson 1984 Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci. 21, 232–240.

    Article  Google Scholar 

  • Deeley, R.M. and P.H. Parr 1914 On the Hintereis glacier. Phil. Mag. 27 (6), 153–176.

    Google Scholar 

  • Engelhardt, H., N. Humphrey, B. Kamb and M. Fahnestock 1990 Physical conditions at the base of a fast moving Antarctic ice stream. Science 248, 57–59.

    Article  Google Scholar 

  • Finsterwalder, S. 1907 Die Theorie der Gletscherschwankungen. Z. Gletscherkunde 2, 81–103.

    Google Scholar 

  • Fowler, A.C. 1982 Waves on glaciers. J. Fluid Mech. 120, 283–321.

    Article  Google Scholar 

  • Fowler, A.C. 1986 A sliding law for glaciers of constant viscosity in the presence of subglacial cavitation. Proc. R. Soc. Lond. A407, 147–170.

    Google Scholar 

  • Fowler, A.C. 1987a A theory of glacier surges. J. Geophys. Res. 92, 9111–9120.

    Article  Google Scholar 

  • Fowler, A.C. 1987b Sliding with cavity formation. J. Glaciol. 33, 255–267.

    Google Scholar 

  • Fowler, A.C. 1989 A mathematical analysis of glacier surges. SIAM J. Appl. Math. 49, 246–262.

    Article  Google Scholar 

  • Fowler, A.C. 1992 Modelling ice sheet dynamics. Geophys. Astrophys. Fluid Dyn. 63, 29–65.

    Article  Google Scholar 

  • Fowler, A.C. and C. Johnson 1995 Hydraulic runaway: a mechanism for thermally reg-ulated surges of ice sheets. J. Glaciol, in press.

    Google Scholar 

  • Fowler, A.C. and D.A. Larson 1978 On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc. R. Soc. Lond. A363, 217–242.

    Google Scholar 

  • Fowler, A.C. and D.A. Larson 1980a The uniqueness of steady state flows of glaciers and ice sheets. Geophys. J.R. Astr. Soc. 63, 333–345.

    Google Scholar 

  • Fowler, A.C. and D.A. Larson 1980b On the flow of polythermal glaciers II. Surface wave analysis. Proc. R. Soc. Lond. A370, 155–171.

    Google Scholar 

  • Hodge, S.M. 1974 Variations in the sliding of a temperate glacier. J. Glaciol. 13, 349–369.

    Google Scholar 

  • Hutter, K. 1983 Theoretical Glaciology. Reidel, Dordrecht.

    Google Scholar 

  • Hutter, K., S. Yakowitz and F. Szidarovsky 1986 A numerical study of plane ice sheet flow. J. Glaciol. 32, 139–160.

    Google Scholar 

  • Kamb, W.B. 1970 Sliding motion of glaciers: theory and observation. Revs. Geophys. Space Phys. 8, 673–728.

    Article  Google Scholar 

  • Kamb, B., and 7 others 1985 Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science 227, 469–479.

    Article  Google Scholar 

  • Kamb, B. 1987 Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92, 9083–9100.

    Article  Google Scholar 

  • Lliboutry, L.A. 1965 Traité de Glaciologie, Masson, Paris.

    Google Scholar 

  • Lliboutry, L.A. 1968 General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol. 7, 21–58.

    Google Scholar 

  • Lliboutry, L.A. 1979 Local friction laws for glaciers: a critical review and new openings. J. Glaciol. 23, 67–95.

    Google Scholar 

  • MacAyeal, D.R. 1993 Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8, 775–784.

    Article  Google Scholar 

  • Morland, L.W. 1984 Thermo-mechanical balances of ice sheet flow. Geophys. Astrophys. Fluid Dyn. 29, 237–266.

    Article  Google Scholar 

  • Nye, J.F. 1960 The response of glaciers and ice sheets to seasonal and climatic changes. Proc. R. Soc. Lond. A256, 559–584.

    Google Scholar 

  • Nye, J.F. 1969 A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. Lond. A311, 445–477.

    Google Scholar 

  • Nye, J.F. 1970 Glacier sliding without cavitation in a linear viscous approximation. Proc. R. Soc. Lond. A315, 381–403.

    Google Scholar 

  • Nye, J.F. 1976 Water flow in glaciers: jökulhlaups, tunnels, and veins. J. Glaciol. 17, 181–207.

    Google Scholar 

  • Paterson, W.S.B. 1994 The physics of glaciers, 3rd edition. Pergamon, Oxford.

    Google Scholar 

  • Robin, G. de Q. 1955 Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol. 2, 523–532.

    Article  Google Scholar 

  • Röthlisberger, H. 1972 Water pressure in intra- and subglacial channels. J. Glaciol. 11,177–203.

    Google Scholar 

  • Waddington, E.D. 1986 Wave ogives. J. Glaciol. 32, 325–334.

    Google Scholar 

  • Weertman, J. 1957 On the sliding of glaciers. J. Glaciol. 3, 33–38.

    Google Scholar 

  • Weertman, J. 1979 The unsolved general glacier sliding problem. J. Glaciol. 23, 97–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fowler, A.C. (1997). Glaciers and ice sheets. In: Díaz, J.I. (eds) The Mathematics of Models for Climatology and Environment. NATO ASI Series, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60603-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60603-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64472-6

  • Online ISBN: 978-3-642-60603-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics