Skip to main content

S-shapedness for energy balance climate models of Sellers-Type

  • Conference paper
The Mathematics of Models for Climatology and Environment

Part of the book series: NATO ASI Series ((ASII,volume 48))

Abstract

Climate models are distinguished by the relative importance they attach to the different components and processes of the climate system. One finds the so-called energy balance climate models at the bottom on a scale of models of increasing complexity, and coupled general circulation models of atmosphere and oceans at the top on that scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann H (1976) Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. Siam Review 45:620–709

    Article  Google Scholar 

  • Amann H (1983) Dual semigroups and second order linear elliptic differential equations. Israel J. Math. 45:225–254

    Google Scholar 

  • Amann H (1984) Existence and regularity for semilinear parabolic evolution equations. Ann. Scuola Norm. Sup. Pisa 11:593–676

    Google Scholar 

  • Amann H (1990) Ordinary differential equations: an introduction to nonlinear analysis. de Gruyter, Berlin, New York

    Book  Google Scholar 

  • Amann H (1993) Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems in Function Spaces, Differential Operators and Nonlinear Analysis, Schmeisser H. D., Triebel H. (eds.) Teubner-Texte zur Mathematik 133:9–126

    Google Scholar 

  • Bhattacharya K, Ghil M, Vulis IL (1982) Internal variability of an energy balance climate model. J. Atmosph. Sci. 39:1747–1773

    Article  Google Scholar 

  • Budyko MI (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21:611–619

    Article  Google Scholar 

  • Daners D, Koch Medina P (1993) Abstract evolution equations, periodic problems and applications. Pitman Research Notes in Mathematics vol. 78

    Google Scholar 

  • Diaz IJ (1995), this volume

    Google Scholar 

  • Ghil M, Childress S (1987) Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory, and climate dynamics. Springer-Verlag New York

    Book  Google Scholar 

  • Hale JK (1988) Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence

    Google Scholar 

  • Henderson-Sellers A, McGuffie K (1987) A Climate Modelling Primer.John Wiley and Sons Chichester

    Google Scholar 

  • Hess P (1991) Periodic-parabolic boundary value problems and positivity. Pitman Research Notes in Mathematics vol 247

    Google Scholar 

  • Hess P, Poláčik P (1993) Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems. SIAM Journ. Math. Anal. 24:1312–1330

    Google Scholar 

  • Hetzer G (1990) The structure of the principal component for semilinear diffusion equations from energy balance climate models. Houston J. Math. 16:203–216

    Google Scholar 

  • Hetzer G (1994) A parameter dependent time-periodic reaction-diffusion equation from climate modeling: S-shapedness of the principal branch of fixed points of the time-1-map. Differential and Integral Equations 7:1419–1425

    Google Scholar 

  • Hetzer G (1995) A functional reaction-diffusion equation from climate modeling: S-shapedness of the principal branch. Diff. and Integral Eq., to appear

    Google Scholar 

  • Hetzer G,Jarausch H, Mackens W (1989) A multiparameter sensitivity analysis of a 2D diffusive climate model. Impact Comput. Sci. Eng. 1:327–393

    Article  Google Scholar 

  • Hetzer G, Schmidt PL (1990) A global attractor and stationary solutions for a reaction diffusion system arising from climate modeling. Nonlinear Analysis: Theory, Methods, and Appl. 14:915–926

    Article  Google Scholar 

  • Hetzer G, Schmidt PL (1992) Global existence and asymptotic behavior for a quasilinear reaction-diffusion system from climate modeling. J.Math. Anal. Appl. 160:250–262

    Article  Google Scholar 

  • Hetzer G, Schmidt PL (1995) Analysis of energy balance models. Proc. 1st World Congress of Nonlinear Analysts, to appear

    Google Scholar 

  • Hirsch MW (1988) Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math. 383:1–53

    Article  Google Scholar 

  • Kerscher W, Nagel R (1984) Asymptotic behavior of one-parameter semigroups of positive operators. Acta Applicandae Mathematicae 2:297–308

    Article  Google Scholar 

  • Lions JL, Temam R, Wang Shouhong (1992a) New formulation of the primitive equations of atmosphere and application. Nonlinearity 5:237–288

    Article  Google Scholar 

  • Lions JL, Temam R, Wang Shouhong (1992b) On the equation of the large-scale ocean. Nonlinearity 5:1007–1053

    Article  Google Scholar 

  • Lions JL, Temam R, Wang Shouhong (1992c) Models of the coupled atmosphere and ocean (CAO 1). Preprint, The Institute for Applied Mathematics and Scientific Computing 9206:1–52

    Google Scholar 

  • Martin RH Jr., Smith HL (1990) Abstract functional differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc. 321:1–44

    Article  Google Scholar 

  • Mora X (1983) Semilinear parabolic problems define semiflows on Ck spaces. Trans. AMS 278:21–55

    Google Scholar 

  • North GR (1995), this volume

    Google Scholar 

  • North GR, Calahan RE, Coakley JA (1981) Energy balance climate models. Review of Geophysics and Space Physics 19:91–121

    Article  Google Scholar 

  • North GR, Mengel JG, Short BA (1983) Simple energy balance models resolving the seasons and the continents: Applications to the astronomical theory of ice ages J. Geophys. Res. 88:6576–6586

    Article  Google Scholar 

  • Parrott ME (1989) Positivity and a principle of linearized stability for delay-differential equations. Diff. and Integral Eqns. 2: 170–182

    Google Scholar 

  • Poláčik P, Tereščák I (1991) Convergence of cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems. Arch. Rat. Mech. Anal. 116:339–360

    Article  Google Scholar 

  • Schmidt BE (1994) Bifurcation of stationary solutions for Legendre type boundary value problems arising from energy balance models. Dissertation Auburn

    Google Scholar 

  • Sellers WB (1969) A global climate model based on the energy balance of the earth-atmospere system. J. Appl. Meteor. 8:301–320

    Article  Google Scholar 

  • Shen W, Yi Y (1995) paper in preparation

    Google Scholar 

  • Stewart HB (1974) Generation of analytic semigroups by strongly elliptic operators. Trans. AMS 259:299–310

    Article  Google Scholar 

  • Takáč P (1992) Domains of attraction of generic ω-imit sets for strongly monotone time-discrete semigroups. Journal reine angew. Math. 423:101–173

    Google Scholar 

  • Wang Shouhong (1990/91) Approximate inertial manifolds for the 2D model of atmosphere. Numer. Funct. Anal, and Optimiz. 11:1043–1070

    Article  Google Scholar 

  • Wang Shouhong (1992a) On the 2D model of large-scale atmospheric motion: well-posedness and attractors. Nonlinear Analysis: Theory, Methods and Appl. 18:17–60

    Article  Google Scholar 

  • Wang Shouhong (1992b) Attractors for the 3D baroclinic quasi-geostrophic equations of large-scale atmosphere. J. Math. Anal. Appl. 165:266–283

    Article  Google Scholar 

  • Washington WM, Parkinson CL(1986) An introduction to three-dimensional climate modeling. University Science Books Mill Valley, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hetzer, G. (1997). S-shapedness for energy balance climate models of Sellers-Type. In: Díaz, J.I. (eds) The Mathematics of Models for Climatology and Environment. NATO ASI Series, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60603-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60603-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64472-6

  • Online ISBN: 978-3-642-60603-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics