Skip to main content

Interannual variability simulated in the Tropical Pacific

  • Conference paper
Book cover The Mathematics of Models for Climatology and Environment

Part of the book series: NATO ASI Series ((ASII,volume 48))

  • 206 Accesses

Abstract

A number of different models of varying complexity have been developed and used in the last two decades to simulate El Niño/Southern Oscillation (ENSO) interannual climate variability in the tropical Pacific (Neelin et al., 1992). These models range from simple conceptual systems, involving only one equation and one variable, to Coupled General Circulation Models (CGCMs) with a large number of degrees of freedom. All of these models have played a role in under standing ENSO. Conceptual low order models drastically reduce the spatial structure of the atmosphere and ocean. Simple models also exist which represent the ocean and/or atmosphere with simplified sets of partial differential equations. Both of these types of model are useful for illustrating fundamental processes of air-sea interaction and have been developed as tools to understand more complicated systems. Intermediate coupled models using reduce-gravity ocean and atmosphere components and realistic thermodynamics are sophisticated enough to produce realistic solutions, and are also simple enough to diagnose (Zebiak and Cane, 1987). High resolution CGCMs can be closely compared to observations, but the important processes at work in them are not always easy to determine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.R., 1992. Interactions between the atmosphere and oceans on time-scales of weeks to years. PhD thesis. University of Oxford, 202 pp.

    Google Scholar 

  • Arakawa, A., 1972. Design of the UCLA general circulation model. Numerical simulation of weather and climate, Dept. of Meteorology, University of California, repport 7, 116 pp.

    Google Scholar 

  • Balmaseda, M.A., 1993. Simulation y Prediction de Fenömeno ENSO con un Modelo Acoplado Océano Atmosfera. PhD. thesis. Univerdad de Alcalâ de Henares, 286 pp

    Google Scholar 

  • Barnett, T.P., 1977. The principal time and space scales of the Pacific trade wind fields. J. Atmos. Sci., 34, 221–236

    Article  Google Scholar 

  • Barnett, T.P., Latif, M., Graham, N., Flügel, M., Pazan, S. and White, W., 1993. ENSO and ENSO-related predictability. Part I: prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J. Climate, 6, 1545–1566

    Article  Google Scholar 

  • Belamari, S., 1993. Variabilité inter-annuelle simulée dans l’Océan Pacifique Tropical. CERFACS STR/CMGC/93–30

    Google Scholar 

  • Blanke, B., 1992. Couche de Melange dans un Modèle Tropical de Circulation Generale Océanique. PhD thesis. Université Paris VI, Avril.

    Google Scholar 

  • Blanke, B. and Pascale, D. Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanog., may.

    Google Scholar 

  • Cane, M.A. and Zebiak, S.E., 1989. Tropical Pacific climate trends since 1960. J. Climate, 2, 731–736.

    Article  Google Scholar 

  • Cardone, V.J., Greenwood, J.G. and Cane, M.A., 1990. On trends in historical marine wind data. J. Climate, 3, 113–127.

    Article  Google Scholar 

  • Cox, M.D., 1984. A primitive equation, 3-dimensional model of the ocean. GFLD Ocean Group Technical Report No. 1, GFDL/NOAA, Princeton, New Jersey.

    Google Scholar 

  • Crowe, P.R., 1951a. The trade wind circulation of the world. Inst Brit. Geogr. Trans. Pap., 15, 39–56.

    Google Scholar 

  • Crowe, P.R., 1951b. The seasonal variation in the strength of the trades. Inst Brit. Geogr. Trans. Pap., 16, 25–47.

    Google Scholar 

  • Dandin, P., 1993. Variabilité Basse Fréquence Simulée dans l’Océan Pacifique Tropical. PhD thesis. Université Paris VI, June.

    Google Scholar 

  • Delecluse, P.; Gurvan, M.: Imbard, M. and Levy, C, 1993. OPA version 7 Ocean Global Circulation Model reference manual. LODYC, rapport interne 93/05.

    Google Scholar 

  • Esbensen, S.K. and Kuslmir, Y., 1981. The heat budget of the global ocean: an atlas based on estimates from marine surface observations. Rep. Climatic Res. Inst, Oregon State Univ., Corvallis, 29, 27 pp.

    Google Scholar 

  • Goldenberg, S.B. and O’Brien J.J., 1980. Time and space variability of tropical Pacific wind stress. Mon. Wea. Rev., 109, 1190–1207.

    Article  Google Scholar 

  • Graham, N., Barnet, T.P. and Latif, M., 1992. Considerations of the predictability of ENSO with a low-order coupled model. TOGA notes,7, 11–15.

    Google Scholar 

  • Hansen, D.V. and Paul, C.A., 1987. Vertical motion in the eastern equatorial Pacific inferred from drifting buoys. Oceanol. Acta, 6, 27–32

    Google Scholar 

  • Harrison, D.E., 1989. On climatological monthly mean wind stress and wind stress curl fields over the world ocean. J. Climate, 2, 57–70.

    Article  Google Scholar 

  • Hellerman, S., 1967. An updated estimate of the wind stress on the world ocean. Mon. Wea. Rev., 95, 607–626

    Article  Google Scholar 

  • Hellerman, S. and Rosenstein, M., 1983. Normal monthly wind stress over the world ocean with errors estimates. J. Phys. Oceanogr., 17, 1093–1104.

    Article  Google Scholar 

  • Hsiung, J., 1986. Mean surface energy fluxes over the global ocean. J. Geophys. Res., 91 (CI), 10585–10606.

    Article  Google Scholar 

  • Latif, M., 1987. Tropical ocean circulation experiments. J. Phys. Oceanogr., bf 17, 246–263.

    Article  Google Scholar 

  • Latif, M. and Flügel, M., 1991. An investigation of short-range climate predictability in the Tropical Pacific. J. Geophys. Res., 96, 2661–2673.

    Article  Google Scholar 

  • Latif, M. and Villwock, A., 1990. Intcraiinual variability in the Tropical Pacific as simulated in coupled ocean-atmosphere models.,J. Mar. Syst., 1, 51–60.

    Article  Google Scholar 

  • Large, W.G. and Pond, S., 1982. Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464–482.

    Article  Google Scholar 

  • Levitus, S., 1982. Climatological atlas of the world ocean. NOAA professional paper, bf 13, 173 pp.

    Google Scholar 

  • Marti, O.; Madec, G. and Deleclusc, P., 1991. Comment on: “Net diffusivity in ocean general circulation models with nonuniform grids”. Accepted in J. Geophys. Res.

    Google Scholar 

  • Neelin, I.D., 1988. A simple model for surface stress and low-level flow in the tropical atmosphere driven by prescribed heating. Quart. J. Roy. Met. Soc., 114, 747–770.

    Article  Google Scholar 

  • Neelin, I.D., 1989. Intcraiinual oscillations in an ocean general circulation model coupled to a simple atmosphere model. Phil. Trans. Roy. Soc. London, 329A, 189–205.

    Google Scholar 

  • Neelin, J.D., 1990. A hybrid coupled general circulation model for El Nino studies. J. Atmos. Sci., 47, 674–693.

    Article  Google Scholar 

  • Neelin, I.D.; Latif, M.; Allaart, M.A.F.; Cane, M.A.; Cubasch, U.; Gates, W.L.; Gent, P.R.; Ghil, M.; Gordon, C; Lau, N.C.; Mechoso, CR.; Meehl, G.A.; Oberhuber, J.M.; Philander, S.G.H.; Schopf, P.S.; Sperber, K.R.; Steil, A.; Tokioka, T.; Tribbia, L. and Zebiak, S.E., 1992. Tropical air-sea interaction in general circulation models. Climate Dyn., 7, 73–104.

    Article  Google Scholar 

  • Oberhuber, J.M., 1988. An atlas based on the COADS data set: the budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. MPI Tech. Rep., 15, 20 pp.

    Google Scholar 

  • Opsteegh, I.D. and Mureau, R., 1984. Description of a 15-layer steady state atmosphere model. Tech. Rep. SR84–19, Univ. Mariland, Dep. Meteorology, College Park.

    Google Scholar 

  • Paulson, C.A. and Simpson, J.J., 1977. Irradiance measurements in the upper ocean. J. Phys. Oceanogr., bf 7, 952–956.

    Article  Google Scholar 

  • Posmentier, E.S.; Cane, M.A. and Zebiak, S.E., 1989. Tropical Pacific climate trends since 1960. J. Climate, 2, 731–736.

    Article  Google Scholar 

  • Philander, S.G.H., Hurlin, W.J. and Siegel A.D., 1987. Simulation of the seasonal cycle of the tropical Pacific Ocean. J. Phys. Oceanogr., 17, 1986–2002.

    Article  Google Scholar 

  • Ramage, CS., 1984. Can shipboard measurements reveal changes in a tropical airsea heat flux?. Climate and Appl. Meteor., 23, 187–193.

    Article  Google Scholar 

  • Ramage, CS.,1987. Secular change in reported surface wind speeds over the ocean. J. Climate and Appl. Meteor., 26, 525–528.

    Article  Google Scholar 

  • Reiter, E.R., 1978a. The interannual variability of the ocean-atmosphere system. J. Atmos. Sci., 35, 347–370.

    Article  Google Scholar 

  • Reiter, E.R., 1978b. Long term wind variability in the tropical Pacific, its possibles causes and effects. Mon. Wea. Rev., 106, 324–330.

    Article  Google Scholar 

  • Reverdin, G., Delecluse, P., Levy, C, Andrich, P., Morlière, A, and Verstraete, J.M., 1991. The near surface tropical Atlantic in 1982–1984. Results from a numerical simulation and a data analysis. Prog. Oceanogr., 27, 273–340.

    Article  Google Scholar 

  • Sadourny, R., 1975. The dynamics of finite-difference models of the shallow water equations.,J. Atmos. Sci., bf 32, 680–689.

    Article  Google Scholar 

  • Stockdale, T.; Anderson, D.; Davcy, M.; Delecluse, P.; Kattenberg, A.; Kitamura, Y.; Latif, M. and Yamagata, T., 1993. Intercomparison of Tropical Ocean GCMs. TOGA Numerical Experiment Group. WCRP-79, WMO/TD-No. 545.

    Google Scholar 

  • Syu, H., Neelin, D. and Weibel, W., 1993. Tropical ocean-atmosphere interaction in a hybrid coupled GMC: seasonal cycle and interannual oscillations. Extended Abstract Volume, Fourth Symposium on Global Change Studies, Jan. 18–21, Anaheim, CA. Published by the Amer. Meteor. Soc., Boston, MA.

    Google Scholar 

  • Terray, L.; Thual, O.; Belamari, S.; Déqué, M.; Dandin, P.; Delecluse, P. and Lévy, C., 1994. Climatology and interannual variability simulated by the ARPEGE/OPA coupled model. Submitted to Climate Dynamics.

    Google Scholar 

  • Trenberth, K.E., Olson, J.G. and Large, W.G., 1989. A Global Ocean Wind Stress Climatology based on ECMWF Analyses. NCAR Tech. Note NCAR/TN-338+STR, 93 pp.

    Google Scholar 

  • Unesco, 1983. Algorithms for computation of fundamental property of sea water. Unesco technical Paper in Marine Science, 44, 53 pp.

    Google Scholar 

  • U. S. Navy Hydrographie Office, 1956. Marine Climatic Atlas of the World, vol. II. NAVAER 50–1C-529, 18 pp. + 275 charts.

    Google Scholar 

  • Vautard, R.; Pascal, Y. and Ghil, M., 1992. Singular spectrum analysis: a toolkit for short, noisy chaotic signals. Physica DSub judice

    Google Scholar 

  • Weare, B.C.; Strub P.T. and Samuel, M.D., 1981. Annual mean surface heat fluxes in the tropical Pacific Ocean. J. Phys. Oceanogr., 38, 554–571.

    Google Scholar 

  • Willebrand, J., 1978. Temporal and spatial scales of the wind field over the North Pacific and North Atlantic. J. Phys. Oceanogr., 8, 1080–1094

    Article  Google Scholar 

  • Wright, P.B., 1988. An atlas based on the COADS data set: fields of mean wind, cloudiness and humidity at the surface of the global ocean. Rep. Max Planck Institut für Meteorologie, 14, 7 pp.

    Google Scholar 

  • Whysall, K.D.B., Cooper, N.S. and Bigg, G.R., 1987. Long-term changes in the Tropical Pacific surface wind field. Nature, 327, 216–219.

    Article  Google Scholar 

  • Wyrtki, K., 1975. El Niño — The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.

    Article  Google Scholar 

  • Wyrtki, K., 1985. Water displacements in the Pacific and the genesis of el Nino cycles. J. Geophys. Res., 90, 7129–7132.

    Article  Google Scholar 

  • Wyrtki, K. and Meyers, G., 1975a. The trade wind field over the Pacific Ocean. Part I. The mean field and the mean annual variation. Rep. HIG-75-1, Hawaii Inst. Geophys., University of Hawaü, 26 pp.

    Google Scholar 

  • Wyrtki, K. and Meyers, G., 1975b. The trade wind field over the Pacific Ocean. Part II. Bimonthly fields of wind stress: 1950 to 1972. Rep. HIG-75–2, Hawaii Inst. Geophys., University of Hawaü, 16 pp.

    Google Scholar 

  • Wyrtki, K. and Meyers, G., 1976. The trade wind field over the Pacific Ocean. J. Appl. Meteor., 15, 698–704.

    Article  Google Scholar 

  • Zebiak, S.E., 1986. Atmospheric convergence feedback in a simple model for El Nino. Mon. Wea. Rev., 114, 1263–1271.

    Article  Google Scholar 

  • Zebiak, S.E. and Cane, M.A., 1987. A model El Nino-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macías, J., Stephenson, D., Terray, L., Belamari, S. (1997). Interannual variability simulated in the Tropical Pacific. In: Díaz, J.I. (eds) The Mathematics of Models for Climatology and Environment. NATO ASI Series, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60603-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60603-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64472-6

  • Online ISBN: 978-3-642-60603-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics