Skip to main content

Seasonal features of global net primary productivity models for the terrestrial biosphere

  • Conference paper
Past and Future Rapid Environmental Changes

Part of the book series: NATO ASI Series ((ASII,volume 47))

  • 371 Accesses

Abstract

The prediction of future environmental changes, in particular the rapid ones, requires the development of coupled global vegetation-climate models (cf. Noblet 1996). Important components of this modelling effort are, for example, the so-called ‘soil-vegetation atmosphere transfer schemes’ (SVAT) models for the sensitivity of the climate to the vegetation, the ‘biome’ models for the description of the vegetation structure in relation to (equilibrium) climate, or the global ‘net primary productivity’ (NPP) models for the biogeochemical fluxes (energy, H2O, CO2) between terrestrial vegetation and the atmosphere. The goal of the NPP models is to help understand the photosynthetically active component in the global carbon balance. This is necessary for the assessment of the biospheric responses to climate change, and their feedbacks to climate.

This work is a partial summary of the efforts of the modelling teams that contributed to the Potsdam NPP Model Intercomparison (for names, see acknowledgements section).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Esser G, Hoffstadt J, Mack F Wittenberg U (1994) High Resolution Biosphere Model:Documentation Model version 3.00.00. Institut für Pflanzenökologie, Justus-Liebig-Universität Gießen

    Google Scholar 

  • Foley JA (1994) Net primary productivity in the terrestrial biosphere:The application of a global model. Journal of Geophysical Research 99 (D10):20773–20783

    Article  Google Scholar 

  • Foley JA (1994) Net primary productivity in the terrestrial biosphere:The application of a global model. Journal of Geophysical Research 99 (D10):20773–20783

    Article  Google Scholar 

  • Gallo KP (1992) Experimental global vegetation index from AVHRR utilizing pre-lunch calibration, cloud and sun-angle screening. Digital data, NOAA, National Geophysical Data Center, Boulder, Colorado, 1992

    Google Scholar 

  • Haxeltine A Pentice IC (manuscript) A general model for the light-use efficiency of primary production.

    Google Scholar 

  • Heimann M Keeling CD (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds:2. Model description and simulated tracer experiments. Geophysical Monograph 55:237–275

    Google Scholar 

  • Kaduk J Heimann M (1996) A Prognostic Phenology Scheme for Global Terrestrial Carbon Cycle Models. Climate research 6:1–19

    Article  Google Scholar 

  • Kergoat L (manuscript) A model of hydrologic equilibrium of leaf area index at the global scale. Journal of Hydrology

    Google Scholar 

  • Knorr W Heimann M (1995) Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus 47B:471–489

    CAS  Google Scholar 

  • Kumar M Monteith JL (1981) Remote sensing of crop growth, inSmith H (ed) Plants and the daylight spectrum, 133–144. Academic Press, New York

    Google Scholar 

  • Leemans R Cramer W (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. Research Report, RR-91–18. International Institute for Applied Systems Analysis (MASA), Laxenburg, Austria

    Google Scholar 

  • Lieth H (1975) Modelling the primary production of the world, inLieth H Whittaker RH (eds) Primary productivity of the biosphere, 237–263. Springer-Verlag, Berlin

    Google Scholar 

  • Lüdeke MKB, Badeck F-W, Otto RD, Häger C, Dönges S, Kindermann J, Würth G, Lang T, Jäkel U, Klaudius A, Ramge P, Habermehl S Kohlmaier GH (1994) The Frankfurt Biosphere Model:a global process-oriented model of seasonal and long-term CO2 exchange between terrestrial ecosystems and the atmosphere. I. Model description and illustrative results for cold deciduous and boreal forests. Climate Research 4:143–166

    Article  Google Scholar 

  • Matthews E (1983) Global vegetation and land use:New high-resolution data bases for climate studies. Journal of Climate and Applied Meteorology 22:474–487

    Article  Google Scholar 

  • Noblet, N de (1996) Modelling late-Quaternary paleoclimates and paleobiomes. in Huntley B, Cramer W, Morgan AV, Prentice HC, Allen JRM (eds) Past and future rapid environmental changes:The spatial and evolutionary responses of terrestrial biota, 31–52. Springer-Verlag, Berlin

    Google Scholar 

  • Otto RD, Hunt ER Kohlmaier GH (manuscript) Static and dynamic input data of Terrestrial Biogeochemical Models. Global Biogeochemical Cycles

    Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut J-C, Seastedt T, Garcia Moya E, Kamnalrut A Kinyamario Jl (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical cycles 7 (4):785–809

    Article  CAS  Google Scholar 

  • Plöchl M Cramer W (1995) Coupling global models of vegetation structure and ecosystem processes. An example from Arctic and boreal ecosystems. Tellus 47B:240–250

    Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA Klooster SA (1993) Terrestrial ecosystem production — a process model based on global satellite and surface data. Global Biogeochemical Cycles 7 (4):811–841

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19 (2):117–134

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19 (2):117–134

    Article  Google Scholar 

  • Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B III Vörösmarty CJ (1991) Potential net primary productivity in South America:application of a global model. Ecological Applications 1 (4):399–429

    Article  Google Scholar 

  • Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B III Vörösmarty CJ (1991) Potential net primary productivity in South America:application of a global model. Ecological Applications 1 (4):399–429

    Article  Google Scholar 

  • Running SW Hunt ER Jr (1993) Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models. Scaling processes between leaf and landscape levels, inEhleringer JR Field C (ed) Scaling Processes between leaf and landscape levels, 141–158. Academic Press, New York

    Google Scholar 

  • Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA, Collatz GJ Randall DA (submitted) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 2:The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate

    Google Scholar 

  • Sellers PJ, Tucker CJ, Collatz CJ, Los SO, Justice CO, Dazlich DA, Randall DA (1994) A global 1 by 1 NDVI data set for climate studies. Part 2:The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing 15 (17):3519–3545

    Article  Google Scholar 

  • Warnant P, Francois L, Strivay D Gerard JC (1994) CARAIB:A global model of terrestrial biological productivity. Global Biogeochemical Cycles 8 (3):255–270

    Article  CAS  Google Scholar 

  • Wilson MF Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J. Climate 5:119–143

    Article  Google Scholar 

  • Woodward Fl, Smith TM, Emanuel WR (1995). A global land primary productivity and phytogeography model. Global Biogeochemical Cycles9 (4):471–490

    Article  CAS  Google Scholar 

  • Zobler L (1986) A World Soil File for Global Climate Modeling. Goddard Institute for Space Studies.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, A. (1997). Seasonal features of global net primary productivity models for the terrestrial biosphere. In: Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., Allen, J.R.M. (eds) Past and Future Rapid Environmental Changes. NATO ASI Series, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60599-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60599-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61877-5

  • Online ISBN: 978-3-642-60599-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics