Skip to main content

Natural migration rates of trees: Global terrestrial carbon cycle implications

  • Conference paper
Past and Future Rapid Environmental Changes

Part of the book series: NATO ASI Series ((ASII,volume 47))

Abstract

Migration of populations or species of trees (‘tree migration’) in response to climate change is of interest both to palaeoecologists who assess past vegetational responses to climate change, and to global ecologists concerned with future climate change induced by increasing greenhouse gases (GHGs). A major difference between climate-driven tree migrations in prehistory and those expected in the future is the high speed of the latter climate change. The 4–6 km which temperate-zone July isotherms are predicted to move northward annually (Solomon et al. 1984) are about an order of magnitude more rapid than prehistoric rates deduced from palaeoecological evidence. Assuming prehistoric rates of warming matched the rate of tree migration (T Webb 1986; Prentice et al. 1991), fossil pollen data allow inference of 400 m yr-1 (Davis 1983) to 800 m yr-1 (Gear & Huntley 1991) of climate change and tree migration at most. The rate may be even slower if tree migration includes the establishment and maturity of the tree population (Bennett 1986) as well as the processes of seed transport, establishment, growth and seed production, normally defined as migration (e.g. Davis 1989; MacDonald et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auclair AND (1992) Extreme climatic fluctuations as a cause of forest dieback in the Pacific Rim. Air Water and Soil Pollut 66:207–229

    Google Scholar 

  • Bennett KD (1984) The post-glacial history of Pinus sylvestris in the British Isles. Quat Sci Rev 3:133–155

    Article  Google Scholar 

  • Bennett KD (1986) The rate of spread and population increase of forest trees during the postglacial. Phil Trans R Soc London B134:523–531

    Google Scholar 

  • Bennett KD (1988) Modeling changes in beech populations:A reply to Dexter et al. (1987). Rev Palaeobot Palynol 56:361–364

    Article  Google Scholar 

  • Bennett KD (1988) Modeling changes in beech populations:A reply to Dexter et al. (1987). Rev Palaeobot Palynol 56:361–364

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Shiyatov SG, Cook ER (1995) Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia. Nature 376:156–159

    Article  CAS  Google Scholar 

  • Bugmann HKM (1993) On the ecology of mountainous forests in a changing climate:A simulation study. Ph.D. Dissertation, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • Burns RM, Honkala BH (eds) (1990) Silvics of North America. Volume 1, Conifers; Volume 2, Hardwoods. Agr Hndbk 654. USDA Forest Service, Washington DC

    Google Scholar 

  • Canham CD (1988) Growth and canopy architecture of shade-tolerant trees:response to canopy gaps. Ecology 69:786–795

    Article  Google Scholar 

  • Canham CD (1988) Growth and canopy architecture of shade-tolerant trees:response to canopy gaps. Ecology 69:786–795

    Article  Google Scholar 

  • Daubenmire RF (1959) Plants and environment. Wiley, New York

    Google Scholar 

  • Davis MB (1981) Outbreaks of forest pathogens in Quaternary history. Proc IV Int Palynol Conf, Lucknow (1976–1977) 3:216–227

    Google Scholar 

  • Davis MB (1983) Quaternary history of deciduous forests of eastern North America and Europe. Ann Mo Bot Gard 70:550–563

    Article  Google Scholar 

  • Davis MB (1987) Invasions of forest communities during the Holocene:Beech and hemlock in the Great Lakes Region, inGran AJ, Crawley MJ, Edward PH (eds) Colonization and stability, 373–393. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Davis MB (1989) Lags in vegetation response to greenhouse warming. Clim Change 15:75–82

    Article  Google Scholar 

  • Davis MB (1990) Climatic change and the survival of forest species, inWoodwell GM (ed) The earth in transition:Patterns and processes of biotic impoverishment, 99–110. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Davis MB, Woods KD, Webb SL, Futyma R (1986) Dispersal versus climate:Expansion of Fagus and Tsuga into the Upper Great Lakes region. Vegetatio 67:93–103

    Article  Google Scholar 

  • Denning AS, Fung IY, Randall D (1995). Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376:240–243

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisneiwski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. Bioscience 37:550–556

    Article  Google Scholar 

  • Fritts HA (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • Gammon RH, Sundquist ET, Fraser PJ (1985) History of carbon dioxide in the atmosphere inTrabalka JR (ed) Atmospheric carbon dioxide and the global carbon cycle, 25–62. DOE/ER-0239, US Dept. of Energy, Washington DC

    Google Scholar 

  • Gear AJ, Huntley B (1991) Rapid changes in the range limits of scots pine 4000 years ago. Science 251:544–547

    Article  PubMed  CAS  Google Scholar 

  • Godman RM, Lancaster K (1990) Tsuga canadensis(L) Carr., Eastern Hemlock, inBurns RM, Honkala BH (eds) (1990a) Silvics of North America. Volume 1, Conifers, 604–612. Agr Hndbk 654, USDA Forest Service, Washington D.C.

    Google Scholar 

  • Greco S, Moss RH, Viner D, Jenne R (1995) Climate Scenarios and Socioeconomic Projections for IPCC WG II Assessment. Material assembled for Lead Authors by IPCC WG II TSU, Washington, DC

    Google Scholar 

  • Greene DF, Johnson EA (1989) A model of wind dispersal of winged or plumed seeds. Ecology 70:339–347

    Article  Google Scholar 

  • Greene DF, Johnson EA (1995) Long-distance wind dispersal of tree seeds. Can J Bot 73:1036–1045

    Article  Google Scholar 

  • Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Ann Rev Phytopath 16:287–307

    Article  Google Scholar 

  • Harlow WM, Harrar ES, White FM (1979) Textbook of dendrology, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SO, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, and Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Resi 5:133–302

    Article  Google Scholar 

  • Hinrichsen D (1987) The forest decline enigma. BioScience 37:542–546

    Article  Google Scholar 

  • Holling CS (1992) The role of forest insects in structuring the boreal landscape, inShugart HH, Leemans R, Bonan GB (eds) A Systems Analysis of the Global Boreal Forest, 170–191. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Houghton JT, Meira-Filho LG, Bruce J, Lee H-S, Callander BA, Haites E, Harris N, Maskell K (eds) (1995) Climate change 1994:Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Article  CAS  Google Scholar 

  • King GA, Neilson RP (1992) The transient response of vegetation to climate change:A potential source of CO2 to the atmosphere. Water, Air and Soil Pollut 64:365–383

    Article  CAS  Google Scholar 

  • Kirschbaum M, Fischlin A, Cannell MGR, Cruz RVO, Galinski W, Cramer WP et al. (1996) The impacts of climate change on forest ecosystems, inClimate Change 1995. Impacts, adaptations and mitigation of climate change:Scientific -Technical analyses. IPCC WG II Second Assessment Report, Chapter 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Leemans R (1989) Possible changes in natural vegetation patterns due to a global warming, inHackl A (ed) Der Treibhauseffekt:Das Problem-Mögliche Folgen-Erforderliche Massnahmen, 105–122. Akadamie für Umwelt und Energie, Laxenburg, Austria

    Google Scholar 

  • Leemans R, Cramer WP (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. Research Report RR91–18. Internat Inst for Applied Sys Anal, Laxenburg, Austria

    Google Scholar 

  • Leishman MR, Hughes L, French K, Armstrong D, Westoby M (1992) Seed and seedling biology in relation to modeling vegetation dynamics under global climate change. Aust J Bot 40:599–613

    Article  CAS  Google Scholar 

  • MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246

    Article  Google Scholar 

  • Melillo JR, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–239

    Article  CAS  Google Scholar 

  • Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376:501–504

    Article  CAS  Google Scholar 

  • Mueller-Dombois D (1992) Potential effects of the increase in carbon dioxide and climate change on the dynamics of vegetation. Water Air and Soil Pollut 64:61–79

    Article  CAS  Google Scholar 

  • Mueller-Dombois D (1992) Potential effects of the increase in carbon dioxide and climate change on the dynamics of vegetation. Water Air and Soil Pollut 64:61–79

    Article  CAS  Google Scholar 

  • Nichols JO (1968) Oak mortality in Pennsylvania:A ten-year study. J For 66:681–694

    Google Scholar 

  • Odum EP (1969) Fundamentals of Ecology. WB Saunders Co, Philadelphia

    Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in Live Vegetation of Major World Ecosystems. ORNL/TM-5862, Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Payette S (1992) Fire as a controlling process in the North American boreal forest, inShugart HH, Leemans R, Bonan GB (eds) A Systems Analysis of the Global Boreal Forest, 144–169. Cambridge Univ Press, Cambridge

    Chapter  Google Scholar 

  • Peet RK, Christiansen NL (1987) Competition and tree death. BioScience 37:586–595

    Article  Google Scholar 

  • Prentice K, Fung IY (1990) The sensitivity of terrestrial carbon storage to climate change. Nature 346:48–50

    Article  Google Scholar 

  • Prentice IC, Solomon AM (1990) Vegetation models and global change, inBradley RS (ed) Global Changes of the Past, 365–383. OIES, UCAR, Boulder

    Google Scholar 

  • Prentice IC, Bartlein PJ, Webb T III (1991) Vegetation change in eastern North America since the last glacial maximum:A response to continuous climatic forcing. Ecology 72:2038–2056

    Article  Google Scholar 

  • Prentice IC, Cramer WP, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Prentice IC, Sykes MT, Lautenschlager M, Harrison SP, Denissenko O, Bartlein PJ (1993) Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecol and Biogeogr Let 3:67–76

    Article  Google Scholar 

  • Schimel D, Enting IG, Heimann M, Wigley TML, Raynaud D, Alves D, Siegenthaler U (1995) CO2 and the Carbon Cycle, inHoughton JT, Meira-Filho LG, Bruce J, Lee H-S, Callander BA, Haites E, Harris N, Maskell K (eds) Climate change 1994:Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, 39–71. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Sedjo RA, Solomon AM (1989) Climate and forests, in Rosenberg NJ, Easterling WE, Crosson PR, Darmstadter J (eds) Greenhouse Warming:Abatement and Adaptation, 105–119. Resources for the Future, Washington

    Google Scholar 

  • Smith TM, Leemans R, Shugart HH (1992a) Sensitivity of terrestrial carbon storage to CO2-induced climate change:Comparison of four scenarios based on general circulation models. Clim Change 21:367–384

    Article  CAS  Google Scholar 

  • Smith TM, Shugart HH, Bonan GB, Smith JB (1992b) Modeling potential response of vegetation to global climate change. Adv Ecol Res 22:93–116

    Article  Google Scholar 

  • Smith TM, Shugart HH (1993a) The transient response of terrestrial carbon storage to a perturbed climate. Nature 361:523–526

    Article  Google Scholar 

  • Smith TM, Shugart HH (1993b) The potential response of global terrestrial carbon storage to a climate change. Water Air and Soil Pollut 70:629–642

    Article  Google Scholar 

  • Solomon AM (1986) Transient response of forests to CO2-induced climate change:Simulation experiments in eastern North America. Oecologia 68:567–79

    Article  Google Scholar 

  • Solomon AM, Kirilenko AP (1996) Simplifying assumptions in modeling terrestrial carbon stocks under changing climate:What if trees do not migrate? (ms. submitted)

    Google Scholar 

  • Solomon AM, Tharp ML, West DC, Taylor GE, Webb JW, Trimble JL (1984) Response of Unmanaged Forests to Carbon Dioxide-Induced Climate Change:Available Information, Initial Tests, and Data Requirements. TR-009, United States Department of Energy Washington

    Google Scholar 

  • Solomon AM, Prentice IC, Leemans R, Cramer WP (1993) The interaction of climate and land use in future terrestrial carbon storage and release. Water Air and Soil Pollut 70:595–614

    Article  Google Scholar 

  • Sundquist ET (1985) Geologic analogs:Their value and limitations in carbon dioxide research, inTrabalka JR, Reichle DE (eds) The Changing Carbon Cycle:A Global Analysis, 371–402. Springer-Verlag, New York

    Google Scholar 

  • VEMAP Participants (1995) Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem Cyc 9:407–437

    Article  Google Scholar 

  • Waring RH (1987) Characteristics of trees predisposed to die. BioScience 37:569–574

    Article  Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest Ecosystems:Concepts and Management. Academic Press New York

    Google Scholar 

  • Webb SL (1986) Potential role of passenger pigeons and other vertebrates in the rapid Holocene migrations of nut trees. Quat Res 26:367–375

    Article  Google Scholar 

  • Webb SL (1989) Contrasting windstorm consequences in two forests, Itasca State Park, Minnesota. Ecology 70:1167–1180

    Article  Google Scholar 

  • Webb T III (1986) Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67:75–91

    Article  Google Scholar 

  • Zinke PJ, Stangenberger AG, Post WM, Emanuel WR, Olson JS (1984) Worldwide organic soil carbon and nitrogen data. ORNL TM-8857, Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solomon, A.M. (1997). Natural migration rates of trees: Global terrestrial carbon cycle implications. In: Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., Allen, J.R.M. (eds) Past and Future Rapid Environmental Changes. NATO ASI Series, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60599-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60599-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61877-5

  • Online ISBN: 978-3-642-60599-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics