Skip to main content

Divide-and-Conquer Treatments of Electron Correlations

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics IX

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 82))

Abstract

Wilson’s numerical renormalization group treatment of a correlated system requires the existence of an extended range of energy scales in the hamiltonian. The presence of such an energy scale hierarchy is often not evident. We argue here that the hierarchy of scales in the correlation energy can be brought about by a suitable transformation of the single particle orbitals. We formulate a variational procedure to select the optimal orbitals for a general hamiltonian. Our method is a natural generalization of the Hartree-Fock theory with systematic inclusion of correlation effects. It is therefore completely general applicable to real systems such as atoms and molecules. As a test calculation, the method is implemented for a exactly solvable model. Comparing to the exact spectrum, we demonstrated, for the low energy spectrum, a systematic improvement of our method over that of Hartree-Fock theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. F. Weisskoft, Science 113>, 101 (1951).

    Article  ADS  Google Scholar 

  2. High Temperature Superconductivity, edited by K. S. Bedell, et al. (Addison-Wesley, Redwood City, CA, 1990).

    Google Scholar 

  3. The Quantum Hall effect, edited by Richard E. Prange and Steven M. Girvin, 2nd ed. (New York, Springer-Verlag, 1990).

    Google Scholar 

  4. N. Grewe and F. Steglich in Handbook on the Physics and Chemistry of Rare Earths 14 (1991).

    Google Scholar 

  5. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981).

    Article  ADS  Google Scholar 

  6. J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

    Article  ADS  Google Scholar 

  7. Recently, there has been a renewed interest in application of RG techniques to correlated systems. See, for example, R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

    Google Scholar 

  8. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

    Article  ADS  Google Scholar 

  9. K. G. Wilson, in Nobel Symposia-Medicine and Natural Sciences(Academic Press, New York) 24, 68 (1974); Adv. Math. 16, 170 (1975).

    Google Scholar 

  10. J.E. Hirsch, Phys. Rev. B 22 (1980) 5259.

    Article  MathSciNet  ADS  Google Scholar 

  11. S. R. White, Phys. Rev. Lett. 69 (1992) 2863, Phys. Rev. B 48 (1993) 10345.

    Article  ADS  Google Scholar 

  12. S. Liang and H. Pang, Phys. Rev. B 49 (1994) 9214.

    Article  ADS  Google Scholar 

  13. Shoudan Liang, J. Phys. Chem. Solids, 56 1729 (1995).

    Article  ADS  Google Scholar 

  14. Shoudan Liang, Phys. Rev. Lett., 75, 3493 (1995).

    Article  ADS  Google Scholar 

  15. The off-diagonal terms in m i are exactly zero when the density of the k-states within each shell as a function of the angular variable θ j is constant. On a finite lattice, the density fluctuate around a constant so the off-diagonal terms will not be exactly zero, but will be very small.

    Google Scholar 

  16. C. N. Yang and C. P. Yang, Phys. Rev. 150 321 (1966).

    Article  ADS  Google Scholar 

  17. G. H. Golub and C. F. Van Loan, Matrix Computations(The Johns Hopkins University Press, Baltimore) 1989.

    MATH  Google Scholar 

  18. S. Liang, to be published.

    Google Scholar 

  19. A. C. Wahl and G. Das, in Methods of Electronic Structure Theory, H. F. Schaefer III ed, (Plenum Press, New York), 1977.

    Google Scholar 

  20. P. W. Anderson, Science 235 (1987) 1196.

    Article  ADS  Google Scholar 

  21. For a review on Hubbard model, see E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Google Scholar 

  22. T. Tokuyasu, M. Kamal, G. Murthy, Phys. Rev. Lett. 71, 4202 (1993).

    Article  ADS  Google Scholar 

  23. M. Lepetit and E. Manousakis, Phys. Rev. B 48, 1028 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, S. (1997). Divide-and-Conquer Treatments of Electron Correlations. In: Landau, D.P., Mon, K.K., SchĂĽttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics IX. Springer Proceedings in Physics, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60597-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60597-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64470-2

  • Online ISBN: 978-3-642-60597-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics