Skip to main content

Coupled Quantum Chains: A Bumpy Path from 1 to 2 Dimensions

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics IX

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 82))

  • 121 Accesses

Abstract

A review of the current theoretical knowledge on coupled quantum chains is given, with emphasis on numerical results. These systems occur in the same materials as high T c superconductors. They allow the study of the dimensional crossover from 1 to 2 dimensions. The behavior of coupled chains, even at isotropic couplings, can be understood in the rung-picture, i.e. the case of large perpendicular couplings. Undoped systems correspond to the Heisenberg spin 1/2 antiferromagnet, and are well understood. They possess a finite spin gap for an even number of coupled chains, and are gapless otherwise. Doped systems are much more difficult to investigate, and only systems with two and three coupled chains have been partially studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Dagotto and M. Rice, Science 271, G18 (1996), and references therein.

    Article  Google Scholar 

  2. Z. Hiroi and M. Takano, Nature 377, 41 (1995), and references therein.

    Article  ADS  Google Scholar 

  3. U.-J. Wiese and H.-P. Ying, Z. Phys. B93 (1994) 147; B.B. Beard and U.-J. Wiese, cond-mat/9602164.

    Article  ADS  Google Scholar 

  4. G. Sierra, cond-mat/9512007.

    Google Scholar 

  5. E. Lieb, T.D. Schultz, and D.C. Mattis, Ann. Phys. 16, 407 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. For a proof, see A.G. Rojo, Phys. Rev. B53, 9172 (1996).

    Google Scholar 

  7. F.D.M. Haldane, Phys. Lett. A93, 464 (1983), Phys. Rev. Lett. 50, 1153 (1993).

    MathSciNet  ADS  Google Scholar 

  8. S.R. White, Phys. Rev. B53, 52 (1996).

    ADS  Google Scholar 

  9. S.R. White, E.M. Noack, and D.J. Scalapino, Phys. Rev. Lett. 73, 886 (1994).

    Article  ADS  Google Scholar 

  10. B. Frischmuth, B. Ammon, and M. Troyer, cond-mat/9601025.

    Google Scholar 

  11. B. Frischmuth, thesis, and private communication.

    Google Scholar 

  12. M. Greven, E.J. Birgeneau, and U.-J. Wiese, cond-mat/9605068.

    Google Scholar 

  13. N. Hatano and Y. Nishiyama, J. Phys. A28, 3911 (1995),

    MathSciNet  ADS  Google Scholar 

  14. Y. Nishiyama, N. Hatano, and M. Suzuki, J. Phys. Soc. Jpn. 65, 560 (1996).

    Article  ADS  Google Scholar 

  15. A.W. Sandvik, E. Dagotto, and D.J. Scalapino, Phys. Rev. 53, R2934 (1996).

    Article  ADS  Google Scholar 

  16. H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70, 875 (1993).

    Article  ADS  Google Scholar 

  17. M. Troyer, H. Tsunetsugu, and D. Würtz, Phys. Rev. 50, 13515 (1994).

    Article  Google Scholar 

  18. See for example the reviews by J. Voit, Rep. Prog. Phys. 58, 977 (1995), and H.J. Schulz, cond-mat/9503150.

    Google Scholar 

  19. H.J. Schulz, Phys. Eev. B53, R2959 (1996).

    ADS  Google Scholar 

  20. D. Poilblanc, H. Tsunetsugu, and T.M. Rice, Phys. Rev. B50, 6511 (1994).

    ADS  Google Scholar 

  21. D. Poilblanc, D.J. Scalapino, and W. Hanke, Phys. Rev. B52, 6796 (1995).

    ADS  Google Scholar 

  22. H. Tsunetsugu, M. Troyer, and T.M. Rice, Phys. Rev. B49, 16078 (1994);

    ADS  Google Scholar 

  23. M. Troyer, H. Tsunetsugu, and T.M. Rice, Phys. Eev. B53, 251 (1996).

    ADS  Google Scholar 

  24. C.A. Hayward, D. Poilblanc, E.M. Noack, D.J. Scalapino, and W. Hanke, Phys. Rev. Lett. 75, 926 (1995),

    Article  ADS  Google Scholar 

  25. C.A. Hayward, D. Poilblanc, and D.J. Scalapino, Phys. Rev. B53, R8863 (1996),

    ADS  Google Scholar 

  26. C.A. Hayward and D. Poilblanc, Phys. Rev. B53, 11721 (1996).

    ADS  Google Scholar 

  27. F. Mila and D. Poilblanc, Phys. Rev. Lett. 76, 287 (1996).

    Article  ADS  Google Scholar 

  28. E. Noack, S.E. White, and D.J. Scalapino, Phys. Rev. Lett. 73, 882 (1996).

    Article  ADS  Google Scholar 

  29. E. Noack, S.E. White, and D.J. Scalapino, cond-mat/9601047.

    Google Scholar 

  30. Y. Munehisa, cond-mat/9510039.

    Google Scholar 

  31. Y. Asai, Phys. Rev. B52, 10390 (1995).

    ADS  Google Scholar 

  32. H. Endres, R.M. Noack, W. Hanke, D. Poilblanc, and D.J. Scalapino, Phys. Rev. B53, 5530 (1996).

    ADS  Google Scholar 

  33. L. Balents and M.P.A. Fisher, Phys. Rev. B53, 12133 (1996).

    ADS  Google Scholar 

  34. E. Arrigoni, cond-mat/9509145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Evertz, H.G. (1997). Coupled Quantum Chains: A Bumpy Path from 1 to 2 Dimensions. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics IX. Springer Proceedings in Physics, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60597-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60597-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64470-2

  • Online ISBN: 978-3-642-60597-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics