Skip to main content

Phase Diagrams of Alloys and Adsorbed Monolayers: Some Recent Results

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics IX

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 82))

  • 119 Accesses

Abstract

We discuss some recent work done on the calculation of phase diagrams of models of binary alloys and adsorbed monolayers. For the nearest-neighbor Ising antiferromagnet on the fcc lattice (model for the Cu-Au system) we study a rather large lattice of 4 x 643 spins. This is necessary since the inherent frustration of the lattice induces a very small interfacial tension between ordered domains. We find no indications for the suggested L′ phase, and locate the triple point at a nonzero temperature. There is some numerical evidence that it might in fact be a multicritical point. We then discuss the extension of lattice gas models to “elastic lattice gases” (ELGs) which include also translational degrees of freedom. Special attention is paid to the statistical treatment of vacant sites, and it is shown that a system A + vacancies is no longer equivalent to a system A + B. The ELG Hamiltonian is then studied for three-dimensional models on the diamond lattice for the unmixing of semiconductor alloys (where we find Mean-Field-like critical behavior), and for a two-dimensional model for c(2 x 2) structure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Binder, in Adv. Sol State Physics, edited by P. Grosse (Vieweg, Braunschweig, 1986), Vol. 26, pp. 133–168.

    Google Scholar 

  2. F. Ducastelle, Order and Phase Stability in Alloys (North Holland, Amsterdam, 1991).

    Google Scholar 

  3. W. Shockley, J. Chem. Phys. 6, 130 (1938).

    Article  ADS  Google Scholar 

  4. U. Gahn, Z. Metallkunde 64, 268 (1973).

    Google Scholar 

  5. R. Kikuchi, J. Chem. Phys. 60, 1071 (1974).

    Article  ADS  Google Scholar 

  6. J. M. Sanchez, D. de Fontaine, and W. Teitler, Phys. Rev. B 26, 1465 (1982).

    Article  ADS  Google Scholar 

  7. A. Finel and F. Ducastelle, Europhys. Lett. 1, 135 (erratum 543) (1986).

    Article  ADS  Google Scholar 

  8. A. Finel, in Alloy Phase Stability, edited by G. M. Stocks and A. Gonis (Kluwer, Dordrecht, 1989), pp. 269–280.

    Google Scholar 

  9. R. Tetot, A. Finel, and F. Ducastelle, J. Stat. Phys. 61, 121 (1990).

    Article  ADS  Google Scholar 

  10. J. Slawny, J. Stat. Phys. 20, 711 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Slawny, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic Press, London, 1987), Vol. 11, pp. 127–205.

    Google Scholar 

  12. J. Bricmont and J. Slawny, J. Stat. Phys. 54, 89 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  13. K. Binder, Phys. Rev. Lett. 45, 811 (1980).

    Article  ADS  Google Scholar 

  14. K. Binder, Z. Phys. B 45, 61 (1981).

    Article  ADS  Google Scholar 

  15. K. Binder, J. L. Lebowitz, M. K. Phani, and M. H. Kalos, Acta Metall. 29, 1655 (1981).

    Article  Google Scholar 

  16. U. Gahn, J. Phys. Chem. Solids 43, 977 (1982).

    Article  ADS  Google Scholar 

  17. U. Gahn, J. Phys. Chem. Solids 47, 1153 (1986).

    Article  ADS  Google Scholar 

  18. H. Ackermann, S. Crusius, and G. Inden, Acta Metall. 34, 2311 (1986).

    Article  Google Scholar 

  19. H. T. Diep, A. Ghazali, B. Benge, and P. Lallemand, Europhys. Lett. 2, 603 (1986).

    Article  ADS  Google Scholar 

  20. J. L. Lebowitz, M. K. Phani, and D. F. Styer, J. Stat. Phys. 38, 413 (1985).

    Article  ADS  Google Scholar 

  21. S. Kämmerer, Diplom thesis, Johannes Gutenberg-Universität Mainz, 1994.

    Google Scholar 

  22. S. Kämmerer, B. Dünweg, K. Binder, and M. d’Onorio de Meo, Phys. Rev. B 53, 2345 (1996).

    Article  ADS  Google Scholar 

  23. G. J. Heilmann, J. Phys. A 13, 263 (1980).

    Article  MathSciNet  Google Scholar 

  24. K. Binder, Z. Phys. B 43, 119 (1981).

    Article  ADS  Google Scholar 

  25. D. J. Wallace, J. Phys. C 6, 1390 (1973).

    Article  ADS  Google Scholar 

  26. E. Domany, Y. Shnidman, and D. Mukamel, J. Phys. C 15, L495 (1982).

    Article  ADS  Google Scholar 

  27. N. B. Wilding and A. D. Bruce, J. Phys.: Condens. Matter 4, 3087 (1992).

    Article  ADS  Google Scholar 

  28. N. B. Wilding, Phys. Rev. E 52, 602 (1995).

    Article  ADS  Google Scholar 

  29. M. Presber, Diplom thesis, Johannes Gutenberg-Universität Mainz, 1996.

    Google Scholar 

  30. D.J. Bergman and B. I. Halperin, Phys. Rev. B 13, 2145 (1976).

    Article  ADS  Google Scholar 

  31. B. N. J. Persson, Surf. Sci. 258, 451 (1991).

    Article  ADS  Google Scholar 

  32. B. Dünweg and D. P. Landau, Phys. Rev. B 48, 14182 (1993).

    Article  ADS  Google Scholar 

  33. P. N. Keating, Phys. Rev. 145, 637 (1966).

    Article  ADS  Google Scholar 

  34. W. W. Wood, in Physics of Simple Liquids, edited by H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke (North Holland, Amsterdam, 1968).

    Google Scholar 

  35. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

    Article  ADS  Google Scholar 

  36. M. E. Fisher, Phys. Rev. 176, 257 (1968).

    Article  ADS  Google Scholar 

  37. D. Brezin and J. Zinn-Justin, Nucl. Physics B 257, 867 (1985).

    Article  ADS  Google Scholar 

  38. A. Aharony, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic Press, London/New York/San Francisco, 1976), Vol. 6.

    Google Scholar 

  39. M. Laradji, D. P. Landau, and B. Dünweg, Phys. Rev. B 51, 4894 (1995).

    Article  ADS  Google Scholar 

  40. D. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  ADS  Google Scholar 

  41. P. C. Kelires and J. Tersoff, Phys. Rev. Lett. 63, 1164 (1989).

    Article  ADS  Google Scholar 

  42. K. Binder and D. P. Landau, Surf. Sci. 108, 503 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dünweg, B., Kämmerer, S., Presber, M. (1997). Phase Diagrams of Alloys and Adsorbed Monolayers: Some Recent Results. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics IX. Springer Proceedings in Physics, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60597-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60597-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64470-2

  • Online ISBN: 978-3-642-60597-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics