Skip to main content

Astroglial and Microglial Activation in Hippocampus of Rat After Global Forebrain Ischemia

  • Conference paper
Maturation Phenomenon in Cerebral Ischemia II
  • 156 Accesses

Summary

The astroglial and microglial reaction to ischemic neuronal death was studied in hippocampus of rats submitted to 30-min, near-complete forebrain ischemia. The global metabolic response to ischemia was assessed by measuring energy metabolism and protein synthesis, and the cell-specific reactions by using a battery of histological, in situ hybridization and immunocytochemical techniques.

Ischemia caused instantaneous suppression of electrophysiological function and global breakdown of energy metabolism, followed by rapid restoration of energy state and gradual recovery of electroencephalogram (EEG) upon recirculation. Protein synthesis was severely inhibited for several hours in all brain regions and remained permanently suppressed in the pyramidal neurons of the vulnerable CA1 sector. In this region neuronal death became histologically visible after 2–3 days.

Thirty min after the beginning of recirculation, the mRNAs of immediate-early genes (c-jun, c-fos) were expressed in neurons from all parts of the hippocampus, followed after about 1 h by the expression of various stress proteins such as heat shock protein 70 and glucose-regulated protein 78 (hsp70, grp78, respectively). After 3–7 days these changes normalized first in the resistant and later also in the vulnerable parts of the hippocampus. Expression of mRNAs of glia-associated proteins followed distinctly later. The message of astroglia-specific proteins such as glial fibrillary acidic protein and sulphated glycoprotein-2 (gfap, sgp-2, respectively) became visible between 6h and 12h, and that of microglia such as CR3 complement receptor β subunit and transforming growth factor β1 (CR3β, TGF-β1) from day 1 on. Glial protein products GFAP, vimentin, MUC 101, MUC 102, and OX-42, reached their maximum between 1 and 3 days and were still present after 7 days. Expression was most pronounced in CA1 sector but to a lesser degree also affected the resistant parts of hippocampus. These data suggest that gene products of reactive glia are not causally involved in neuronal death but are important components of the glial phenotype in regions with neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki T, Kato H, Liu XH, Kogure K, Itoyama Y (1994) Induction of heat shock protein 70 and glial fibrillary acidic protein in the postischemic gerbil hippocampus. Metab Brain Dis 9: 369–375

    Article  PubMed  CAS  Google Scholar 

  2. Banati RB, Gehrmann J, Wieβner C, Hossmann K-A, Kreutzberg GW (1995) Glial expression of the β-amyloid precursor protein ( APP) in global ischemia. J Cereb Blood Flow Metab 15: 647–654

    Article  PubMed  CAS  Google Scholar 

  3. Blinzinger K, Kreutzberg GW (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch 85: 145–157

    Article  PubMed  CAS  Google Scholar 

  4. Cooper HK, Zalewska T, Kawakami S, Hossmann K-A, Kleihues P (1977) The effect of ischaemia and recirculation on protein synthesis in the rat brain. J Neurochem 28: 929–934

    Article  PubMed  CAS  Google Scholar 

  5. Faraci FM, Brian JE (1994) Nitric oxide and the cerebral circulation. Stroke 25: 692–703

    Article  PubMed  CAS  Google Scholar 

  6. Finsen BR, Jorgensen MB, Diemer NH, Zimmer J (1993) Microglial MHC antigen expression after ischemic and kainic acid lesions of the adult rat hippocampus. Glia 7: 41–49

    Article  PubMed  CAS  Google Scholar 

  7. Giulian D, Vaca K (1993) Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 24: I84 - I90

    Article  PubMed  CAS  Google Scholar 

  8. Hossmann K-A (1993) Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96: 161–177

    Article  PubMed  CAS  Google Scholar 

  9. Hu BR, Wieloch T (1993) Stress-induced inhibition of protein-synthesis initiation–modulation of initiation factor-ii and guanine-nucleotide exchange factor activities following transient cerebral-ischemia in the rat. J Neurosci 13: 1830–1838

    PubMed  CAS  Google Scholar 

  10. Ivacko JA, Sun R, Silverstein FS (1996) Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 39: 39–47

    Article  PubMed  CAS  Google Scholar 

  11. Kato H, Kogure K, Araki T, Itoyama Y (1995) Graded expression of immunomolecules on activated microglia in the hippocampus following ischemia in a rat model of ischemic tolerance. J Cereb Blood Flow Metab 11: 966–973

    Google Scholar 

  12. Kindy MS, Bhat AN, Bhat NR (1992) Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus. Mol Brain Res 13: 199–206

    Article  PubMed  CAS  Google Scholar 

  13. Kirino T, Tamura A, Sano K (1985) Selective vulnerability of the hippocampus to ischemia. Reversible and irreversible types of ischemic cell damage. Prog Brain Res 63: 39–58

    Article  PubMed  CAS  Google Scholar 

  14. Kloiber O, Miyazawa T, Hoehn-Berlage M, Hossmann K-A (1993) Simultaneous 31P NMR spectroscopy and laser Doppler flowmetry of rat-brain during global-ischemia and reperfusion. NMR Biomed 6: 144–152

    Article  PubMed  CAS  Google Scholar 

  15. Koenig H, Goldstone AD, Lu CY (1989a) Blood-brain barrier breakdown in cold-injured brain is linked to a biphasic stimulation of ornithine decarboxalase activity and polyamine synthesis: both are coordinately inhibited by verapamil, dexamethasone, and aspirin. J Neurochem 52: 101–109

    Article  PubMed  CAS  Google Scholar 

  16. Kogure K, Kato H (1993) Altered gene expression in cerebral ischemia. Stroke 24: 2121–2127

    Article  PubMed  CAS  Google Scholar 

  17. Lehrmann E, Kiefer R, Finsen B, Diemer NH, Zimmer J, Hartung HP (1995) Cytokines in cerebral ischemia: expression of transforming growth factor beta-1 (TGF-beta 1) mRNA in the postischemic adult rat hippocampus. Exp Neurol 131: 114–123

    Article  PubMed  CAS  Google Scholar 

  18. McRae A, Gilland E, Bona E, Hagberg H (1995) Microglia activation after neonatal hypoxicischemia. Dev Brain Res 84: 245–252

    Article  CAS  Google Scholar 

  19. Morioka T, Kalehua AN, Streit WJ (1991) The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 11: 966–973

    Article  PubMed  CAS  Google Scholar 

  20. Morrison RS, De Vellis J, Lee YL, Bradshaw RA, Eng LF (1985) Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes. J Neurosci Res 14: 167–176

    Article  PubMed  CAS  Google Scholar 

  21. Neumann-Haefelin T, Wiessner C, Vogel P, Back T, Hossmann K-A (1994) Differential expression of the immediate early genes c-fos, c-jun, junB, and NGFI-B in the rat brain following transient forebrain ischemia. J Cereb Blood Flow Metab 14: 206–216

    Article  PubMed  CAS  Google Scholar 

  22. Nowak TS (1990) Protein synthesis and the heat shock/stress response after ischemia. Cereb Brain Metab Rev 2: 345–366

    Google Scholar 

  23. Oderfeld-Nowak B, Bacia A, Gradkowska M, Fusco M, Vantini G, Leon A, Aloe L (1992) In vivo activated brain astrocytes may produce and secrete nerve growth factor-like molecules. Neurochem Int 21: 455–461

    Article  PubMed  CAS  Google Scholar 

  24. Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM (1995) Increased beta-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: association with proliferation of astrocytes. Eur J Neurosci 7: 501–510

    Article  PubMed  CAS  Google Scholar 

  25. Petito CK, Halaby IA (1993) Relationship between ischemia and ischemic neuronal necrosis to astrocyte expression of glial fibrillary acidic protein. Int J Dev Neurosci 11: 239–247

    Article  PubMed  CAS  Google Scholar 

  26. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272

    Article  PubMed  CAS  Google Scholar 

  27. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt-Kastner R, Paschen W, Groβe Ophoff B, Hossmann K-A (1989) A modified 4-vessel occlusion model for inducing incomplete forebrain ischemia in rats. Stroke 20: 938–946

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt-Kastner R, Szymas J, Hossmann K-A (1990) Immunohistochemical study of glial reaction and serum-protein extravasation in relation to neuronal damage in rat hippocampus after ischemia. Neuroscience 38: 527–540

    Article  PubMed  CAS  Google Scholar 

  30. Scholz W (1953) Selective neuronal necrosis and its topistic patterns in hypoxemia and oligemia. J Neuropathol 12: 249–261

    Article  CAS  Google Scholar 

  31. Sharp FR, Sagar SM (1994) Alterations in gene expression as an index of neuronal injury: heat shock and the immediate early gene response. Neurotoxicology 15: 51–59

    PubMed  CAS  Google Scholar 

  32. Smith CB, Deibler GE, Eng K, Schmidt K, Sokoloff L (1988) Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci USA 85: 9341–9345

    Article  PubMed  CAS  Google Scholar 

  33. Streit WJ (1993) Microglial-neuronal interactions. J Chem Neuroanat 6: 261–266

    Article  PubMed  CAS  Google Scholar 

  34. Takami K, Kiyota Y, Iwane M, Miyamoto M, Tsukuda R, Igarasi K, Shino A, Wanaka A, Shiosaka S, Tohyama M (1993) Upregulation of fibroblast growth factor-receptor messenger RNA expression in rat brain following transient forebrain ischemia. Exp Brain Res 97: 185–194

    Article  PubMed  CAS  Google Scholar 

  35. Tomioka C, Nishioka K, Kogure K (1993) A comparison of induced heat-shock protein in neurons destined to survive and those destined to die after transient ischemia in rats. Brain Res 612: 216–220

    Article  PubMed  CAS  Google Scholar 

  36. Widmann R, Miyazawa T, Hossmann K-A (1993) Protective effect of hypothermia on hippocampal injury after 30 minutes of forebrain ischemia in rats is mediated by postischemic recovery of protein-synthesis. J Neurochem 61: 200–209

    Article  PubMed  CAS  Google Scholar 

  37. Wiessner C, Back T, Bonnekoh P, Kohno K, Gehrmann J, Hossmann K-A (1993) Sulfated glycoprotein-2 mRNA in the rat brain following transient forebrain ischemia. Mol Brain Res 20: 345–352

    Article  PubMed  CAS  Google Scholar 

  38. Wiessner C, Back T, Bonnekoh P, Kohno K, Gehrmann J, Hossmann K-A (1993) Sulfated glycoprotein-2 mRNA in the rat brain following transient forebrain ischemia. Mol Brain Res 20: 345–352

    Article  PubMed  CAS  Google Scholar 

  39. Wiessner C, Gehrmann J, Lindholm D, Topper R, Kreutzberg GW, Hossmann K-A (1993) Expression of transforming growth factor-131 and interleukin-113 mRNA in rat brain following transient forebrain ischemia. Acta Neuropathol (Berl) 86: 439–446

    Article  CAS  Google Scholar 

  40. Wiessner C, Vogel P, Neumann-Haefelin T, Hossmann K-A (1995) Molecular correlates of delayed neuronal death following transient forebrain ischemia in the rat. Acta Neurochir (Wien) 66 [Suppl]: 1–7

    Google Scholar 

  41. Wisden W, Morris BJ, Hunt SP (1991) In situ hybridization with synthetic DNA probes. In: Chad J, Wheal H (eds) Molecular neurobiology—a practical approach. Oxford University Press, Oxford, pp 205–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hossmann, KA., Wiessner, C. (1997). Astroglial and Microglial Activation in Hippocampus of Rat After Global Forebrain Ischemia. In: Ito, U., Kirino, T., Kuroiwa, T., Klatzo, I. (eds) Maturation Phenomenon in Cerebral Ischemia II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60546-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60546-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61673-3

  • Online ISBN: 978-3-642-60546-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics