Skip to main content

On Central-Difference and Upwind Schemes

  • Chapter
Upwind and High-Resolution Schemes

Abstract

A class of numerical dissipation models for central-difference schemes constructed with second- and fourth-difference terms is considered. The notion of matrix dissipation associated with upwind schemes is used to establish improved shock capturing capability for these models. In addition, conditions are given that guarantee that such dissipation models produce a TVD scheme. Appropriate switches for this type of model to ensure satisfaction of the TVD property are presented. Significant improvements in the accuracy of a central-difference scheme are demonstrated by computing both in viscid and viscous transonic airfoil flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. van Leer, inProceedings of Eighth International Conference on Numerical Methods in Fluid Dynamics, edited by E. Krause,Lecture Notes in Physics, Vol. 170 (Springer-Verlag. Berlin, 1982), p. 507.

    Google Scholar 

  2. P. L. Roe,J. Comput. Phys. 43, 357 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Jameson, W. Schmidt, and E. Turkel. AIAA Paper 81–1259, 1981 (unpublished).

    Google Scholar 

  4. A. Jameson and T. J. Baker, AIAA Paper 84–0093, 1984 (unpublished).

    Google Scholar 

  5. J. E. Deese and R. K. Agarwal, AIAA Paper 83–1853, 1983 (unpublished).

    Google Scholar 

  6. S. V. Subramanian and R. Bozzola, AIAA Paper 85–1332, 1985 (unpublished).

    Google Scholar 

  7. T. H. Pulliam,AIAA J.24, 1931 (1986).

    Article  ADS  MATH  Google Scholar 

  8. A. Jameson and S. Yoon,AIAA J.25. 929 (1987).

    Article  ADS  Google Scholar 

  9. R. C. Swanson and E. Turkel. AIAA Paper 87–1107, 1987 (unpublished).

    Google Scholar 

  10. L. Martinelli and A. Jameson, AIAA Paper 88–0414, 1988 (unpublished).

    Google Scholar 

  11. H. C. Yee, NASA TM 89464, 1987 (unpublished).

    Google Scholar 

  12. E. Turkel, inProceedings of the IIth International Conference on Numerical Methods in Fluid Dynamics, edited by D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt,Lecture.Notes in Physics, Vol. 323 ( Springer-Verlag, Berlin, 1989 ), p. 586.

    Google Scholar 

  13. A. Harten,J. Comput. Phys. 49, 357 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. E. Tadmor,SIAM J. Numer. Anal. 25, 1002 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P. K. Sweby,SIAM J. Numer. Anal. 21, 995 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. P. C. E. Jorgenson and E. Turkel, AIAA Paper 92–0053, 1992 (unpublished).

    Google Scholar 

  17. A. Jameson, MAE Report 1743, Princeton University. 1985 (unpublished).

    Google Scholar 

  18. R. C. Swanson and E. Turkel, AIAA Paper 85–0035, 1985 (unpublished).

    Google Scholar 

  19. R. K. Agarwal and J. E. Deese, AIAA Paper 84–1551, 1984 (unpublished).

    Google Scholar 

  20. L. Martinelli, A. Jameson, and F. Grasso, AIAA Paper 86–0208, 1986 (unpublished).

    Google Scholar 

  21. V. N. Vatsa,J. Aircraft 24, 377 (1987).

    Article  Google Scholar 

  22. R. C. Swanson and R. Radespiel,AIAA J.29, 697 (1991).

    Article  ADS  Google Scholar 

  23. E. Turkel,Appl. Numer. Math. 2, 529 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. L. Thomas and M. D. Salas,AIAA J.24, 1074 (1986).

    Article  ADS  Google Scholar 

  25. P. H. Cook, M. A. McDonald, and M. C P. Firmin, AGARD Advisory Report No. 138, 1979 (unpublished).

    Google Scholar 

  26. E. Turkel and V. N. Vatsa, AIAA Paper 90–1445, 1990 (unpublished).

    Google Scholar 

  27. N. Decker and E. Turkel, “Multigrid for Hypersonic Inviscid Flows,” Proceedings of Third International Conference on Hyperbolic Problems, Uppsala, Sweden, June 1990 (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Academic Press, Inc.

About this chapter

Cite this chapter

Swanson, R.C., Turkel, E. (1992). On Central-Difference and Upwind Schemes. In: Hussaini, M.Y., van Leer, B., Van Rosendale, J. (eds) Upwind and High-Resolution Schemes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60543-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60543-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64452-8

  • Online ISBN: 978-3-642-60543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics