Skip to main content

ICASE and the History of High-Resolution Schemes

  • Chapter
  • 1927 Accesses

Abstract

The need for high-resolution schemes is a direct consequence of the nonlinear properties of hyperbolic systems of conservation laws such as the Euler equations of inviscid compressible flow. Due to the nonlinearity of these equations, any compression wave, no matter how smooth initially, will evolve into a shock discontinuity, while the interaction of shock waves in turn may create shear and entropy discontinuities. When attempting to compute a solution with such features on a grid of discrete meshes, we have the choice of representing these as actual discontinuities — as in “shock fitting” [1, 2], “jump recovery” [3], or “sub-cell resolution” [4], or spreading them artificially, as in “shock capturing” [5, 6]. In the latter technique the goal is to automatically represent any discontinuity by a sharp but oscillation-free transition, with most of the jump realized within one to three meshes, without compromising accuracy away from such jumps. The term “high resolution” appeared first in an article by A. Harten [7], who attributed it to P. R. Woodward.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Moretti, “Efficient Euler solver with many applications”,AIA A Journal,vol. 26, pp. 655–660, 1988.

    ADS  Google Scholar 

  2. K. W. Morton and M. F. Paisley, “A finite volume scheme with shock-fitting for the Euler equations”,Journal of Computational Physics, vol. 80, pp. 168 – 203, 1989.

    Article  ADS  MATH  Google Scholar 

  3. K. W. Morton and M. A. Rudgyard, “Shock recovery and the cell-vertex scheme for the steady Euler equations”,Lecture Notes in Physics, vol. 323, pp. 424 – 428, 1989.

    Article  ADS  Google Scholar 

  4. A. Harten, “ENO schemes with subcell resolution”,Journal of Computational Physics, vol. 83, pp. 148 – 184, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. R. D. Richtmyer and K. W. Morton,Difference Methods for Initial-Value Problems. Interscience, 1967.

    Google Scholar 

  6. P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”,Communications on Pure and Applied Mathematics, vol. 7, pp. 159 – 193, 1954.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Harten, “High-resolution schemes for hyperbolic conservation laws”,Journal of Computational Physics, vol. 49, pp. 357 – 393, 1983.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. S. K. Godunov, “A finite-difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics”, Matematicheskii Sbornik, vol. 47, pp. 271 – 306, 1959.

    MathSciNet  Google Scholar 

  9. P. D. Lax and B. Wendroff, “Systems of conservation laws”,Communications in Pure and Applied Mathematics, vol. 13, pp. 217 – 237, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. L. Rubin and S. Z. Burstein, “Difference methods for the inviscid and viscous equations of a compressible gas”,Journal of Computational Physics, vol. 2, pp. 178 – 196, 1967.

    Article  ADS  MATH  Google Scholar 

  11. R.W. MacCormack, “The effect of viscosity in hypervelocity impact cratering”, AIAA Paper 69 – 354, 1969.

    Google Scholar 

  12. V. V. Rusanov, “On difference schemes of third-order accuracy for nonlinear hyperbolic systems”,Journal of Computational Physics, vol. 5, pp. 507 – 516, 1970.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Z. Burstein and A. A. Mirin, “Third order difference methods for hyperbolic systems”,Journal of Computational Physics, vol. 5, pp. 547 – 571, 1970.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. J. P. Boris, “A fluid transport algorithm that works”, inComputing as a Language of Physics, pp. 171–189, International Atomic Energy Commission, 1971.

    Google Scholar 

  15. B. van Leer, “Towards the ultimate conservative difference scheme. I. The quest of monotonicity”,Lecture Notes in Physics, vol. 18, pp. 163 – 168, 1973.

    Article  ADS  Google Scholar 

  16. J. P. Boris and D. L. Book, “Flux-Corrected Transport I: SHASTA, a fluid-transport algorithm that works”,Journal of Computational Physics, vol. 11, pp. 38 – 69, 1973.

    Article  ADS  Google Scholar 

  17. J. P. Boris, D. L. Book, and K. H. Hain, “Flux-Corrected Transport II: Generalization of the method”,Journal of Computational Physics, vol. 18, pp. 248 – 283, 1975.

    Article  ADS  Google Scholar 

  18. J. P. Boris and D. L. Book, “Flux-Corrected Transport III: Minimal error FCT methods”,Journal of Computational Physics, vol. 20, pp. 397 – 431, 1976.

    Article  ADS  Google Scholar 

  19. S. Zalesak, “Fully multidimensional Flux-Corrected Transport algorithms for fluids”,Journal of Computational Physics, vol. 31, pp. 335 – 362, 1979.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A. Harten, “The Artificial Compression Method for computation of shocks and contact discontinuities: III. Self-adjusting hybrid schemes”,Mathematics of Computation, vol. 32, pp. 363 – 389, 1978.

    MathSciNet  MATH  Google Scholar 

  21. B. van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme”,Journal of Computational Physics, vol. 14, pp. 361 – 370, 1974.

    Article  ADS  Google Scholar 

  22. B. van Leer, “Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow”,Journal of Computational Physics, vol. 23, pp. 263 – 275, 1977.

    Article  ADS  Google Scholar 

  23. B. van Leer, “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection”,Journal of Computational Physics, vol. 23, pp. 276 – 299, 1977.

    Article  ADS  Google Scholar 

  24. B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov–s method”,Journal of Computational Physics, vol. 32, pp. 101 – 136, 1979.

    Article  ADS  Google Scholar 

  25. P. Colella, “A direct Eulerian MUSCL scheme for gas dynamics”,SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 104 – 117, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Colella and P. R. Woodward, “The Piecewise-Parabolic Method (PPM) for gas-dynamical simulations”,Journal of Computational Physics, vol. 54, pp. 174 – 201, 1984.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. P. R. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”,Journal of Computational Physics, vol. 54, pp. 115 – 173, 1984.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. J. Chorin, “Random choice solution of hyperbolic systems”,Journal of Com-putional Physics, vol. 22, pp. 517 – 533, 1976.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. J. Glimm, “Solution in the large for nonlinear hyperbolic systems of equations”,Comm. Pure Appi. Math., vol. 18, pp. 697 – 715, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Colella, “Glimm–s method for gas dynamics”,SIAM Journal on Numerical Analysis, vol. 18, pp. 289 – 315, 1981.

    Article  MathSciNet  Google Scholar 

  31. P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws”,SIAM Journal on Numerical Analysis, vol. 21, pp. 995 – 1011, 1984.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. P. Spekreijse,Multigrid Solution of the Steady Euler Equations. PhD thesis,Technische Universiteit Delft, 1987. Published by the Centrum voor Wiskunde en Informatica (CWI ), Amsterdam.

    Google Scholar 

  33. B. Koren,Multigrid and Defect Correction for the Steady Navier-Stokes Equations. PhD thesis, Technische Universiteit Delft, 1989. Published by the Centrum voor Wiskunde en Informatica (CWI ), Amsterdam.

    Google Scholar 

  34. A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy, “Some results on uniformly high-order accurate essentially non-oscillatory schemes”,J. Appl. Num.Math., vol. 2, pp. 347 – 377, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Harten and S. Osher, “Uniformly high-order accurate non-oscillatory schemes I”,SIAM J. Numer. Anal, vol. 24, pp. 279 – 309, 1987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, “Uniformly high-order accurate non-oscillatory schemes III”, Journal of Computational Physics, vol. 71,pp. 231 – 303, 1987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. C. W. Shu and S. Osher, “Efficient implementation of Essentially Non-Oscillatory shock capturing schemes”,Journal of Computational Physics, vol. 77, pp. 439 – 471, 1988.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference schemes”,Journal of Computational Physics, vol. 43, pp. 357 – 372, 1981.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. S. Osher and F. Solomon, “Upwind schemes for hyperbolic systems of conservation Laws”,Mathematics and Computation, vol. 38, pp. 339 – 374, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Harten, P. D. Lax, and B. van Leer, “Upstream differencing and Godunov- type schemes for hyperbolic conservation laws”, SIAM Review, vol. 25, pp. 35 – 61, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. L. Steger and R. F. Warming, “Flux vector splitting of the inviscid gas-dynamic equations with applications to finite difference methods”,Journal of Computational Physics, vol. 40, pp. 263 – 293, 1981.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. B. Engquist and S. Osher, “Stable and entropy satisfying approximations for transonic flow calculations”, Mathematics of Computation, vol. 34, pp. 45 – 75, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. K. Chakravarthy and S. Osher, “A new class of high-accuracy TVD schemes for hyperbolic conservation laws”, AIAA Paper 85–0363, 1985.

    Google Scholar 

  44. P. L. Roe, “The use of the Riemann problem in finite-difference schemes”,Lecture Notes in Physics, vol. 141, pp. 354 – 359, 1980.

    Article  ADS  Google Scholar 

  45. J. Glimm and P. D. Lax, “Decay of solutions of systems of nonlinear hyperbolic conservation laws”,Mem. Amer. Math. Soc, no. 101, 1970.

    Google Scholar 

  46. A. Harten, “On a class of high resolution total variation stable finite difference schemes”,SIAM Journal on Numerical Analysis, vol. 21, pp. 1 – 23, 1984.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. J. B. Goodman and R. J. LeVeque, “On the accuracy of stable schemes for 2D conservation laws”,Mathematics of Computation, vol. 45, pp. 15 – 21, 1985.

    MathSciNet  MATH  Google Scholar 

  48. W. K. Anderson, J. L. Thomas, and B. van Leer, “Comparison of finite volume flux vector splittings for the Euler equations”,AIAA Journal, vol. 24, pp. 1453 – 1460, 1985.

    Article  ADS  Google Scholar 

  49. J. L. Thomas, B. van Leer, and R. W. Walters, “Implicit flux-split schemes for the Euler equations”, AIAA Paper 85–1680, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Leer, B. (1997). ICASE and the History of High-Resolution Schemes. In: Hussaini, M.Y., van Leer, B., Van Rosendale, J. (eds) Upwind and High-Resolution Schemes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60543-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60543-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64452-8

  • Online ISBN: 978-3-642-60543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics