The Lateritic Nickel-Ore Deposits



Nickel belongs to the transition metal family and shows close chemical similarities with Fe and Co. Even more than these elements, it is concentrated in silicated Fe-Mg minerals by octahedral substitution with Fe2+ ions. Thus, the mean mineral/ matrix partition coefficient of Ni is 14.0,5.0 and 2.6 for basaltic whole rocks, for olivine, and orthopyroxene and clinopyroxene, respectively. The high Ni contents in olivine (3000–4500 ppm), spinel (3000–3500 ppm) and orthopyroxene minerals (650–1000 ppm) emphasize its high affinity for the first formed minerals during fractional crystallization of magmas. This is due to the electronic configuration of the Ni2+ ion: the coordinating octahedron of oxygen atoms is more stable with Ni2+ than with Fe2+ or Mg2+ atoms in the centre (Burns 1970). Ni cannot be defined as a rare element in the universe (in decreasing order of abundance, it takes the 14th place, before Na, K or Mn), but the average crustal content of 75 ppm emphasizes its lowlithophile characteristics. Ni is more abundant in materials of mantellic origin, especially in ultrabasic rocks with a world average content of 1450 ppm; the content being as high as 3000 ppm in dunites (Turekian 1978).


Ultrabasic Rock Chromiferous Spinel Nickeliferous Laterite Laterite Profile Nickeliferous Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avias J (1978) L’évolution des idées et des connaissances sur la genèse et sur la nature des minerais de nickel, en particulier latéritiques, de leur découverte à nos jours. Bull BRGM Paris Sect 11:162–165.Google Scholar
  2. Bernardelli AL, Melfi AJ, Oliveira SMB, Trescases JJ (1983) The Carajas nickel deposit. Proe 2nd Int Seminar on Lateritisation Processes, São Paulo 1982. In: Melfi AJ, Carvalho A (eds) Laterisation processes. Instituto Astronômico e Geofisico, Univ São Paulo, Brazil, pp 53–63.Google Scholar
  3. Besset F (1978) Localisations et répartitions successives du nickel au cours de I’altération latéritique des péridotites de Nouvelle-Calédonie.Thèse, U niv Montpellier, 129 pp.Google Scholar
  4. Brindley GW (1978) The structure and chemistry of hydrous nickel-containing silicate and aluminate minerals. Bull BRGM Paris Sect 11:233–245.Google Scholar
  5. Brindley GW, Hang PT (1973) The nature of garnierites I. Clay Min 21:17–40.Google Scholar
  6. Brindley GW, Maksimovicz Z (1974) The nature and nomenclature of hydrous nickel-containing silicates. Clay Min 10:271–277.CrossRefGoogle Scholar
  7. Brindley GW, Wan MM (1975) Compositions, structures and thermal behavior of nickel-containing minerals in the lizardite-nepouite series. Am Mineral 60:863–871.Google Scholar
  8. Brindley GW, Bish DL, Wan HM (1979) Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. Am Mineral 64:615–625.Google Scholar
  9. Burns RG (1970) Mineralogical applications of Crystal Field Theory. Cambridge Univ Press, Cambridge.Google Scholar
  10. Cervelle BD, Maquet M (1982) Cristallochimie des lizardites substituées Mg-Fe-Ni par spectrométrie visible et infra-rouge proche. Clay Min 17:377–392.CrossRefGoogle Scholar
  11. Chukrov FV, Gorshov AI, Sivtsov AV, Baresovskaya VV (1983) On the manganese mineralogy, in the latente weathering crusts of ultrabasic rocks. 2nd Int Seminar on Lateritisation Processes, São Paulo. In: Melfi AJ, Carvalho A (eds) Lateritisation processes. Instituto Astronòmico e Geofísico, Univ Säo Paulo, Brazil, pp 147–158.Google Scholar
  12. Colin F (1985) Etude pétrologique des alterations de pyroxénite du gisement nickélifère de Niquelandia (Brésil). Paris Jrav Doe Mém ORSTOM, Paris, 137 pp.Google Scholar
  13. Colin F, Nahon D, Trescases JJ, Melfi AJ (1990) Lateritic weathering of pyroxenites at Niquelandia, Goias, Brazil: the supergene behavior of nickel. Econ Geol 85:1010–1023.CrossRefGoogle Scholar
  14. Decarreau A, Colin F, Herbillon A, Manceau A, Nahon D, Paquet H, Trauth-Badaut D, Trescases JJ (1987) Domain segregations in Ni-Fe-Mg smectites. Clays Clay Min 35:1–10.CrossRefGoogle Scholar
  15. De Waal SA (1971) South African nickeliferous serpentinites. Min Sci Eng Pretoria 3 (2):32–45.Google Scholar
  16. Deyoung JR, Sutphin DM, Werner ABT, Foose MP (1985) International strategic minerals inventory: sumary report. Nickel Denver, CO, US Geol Surv,62 pp (circular, 930-D).Google Scholar
  17. Elias M, Ronaldson MJ, Giorgetta N (1981) Geology, mineralogy and chemistry of lateritic Ni-Co deposits near Karlgoorlie, Western Australia. Econ Geol 76:1675–1683.CrossRefGoogle Scholar
  18. Faust GT (1966) The hydrous nickel-magnesium silicates.The gamierite group. Am Mineral 51:279–298.Google Scholar
  19. Garnier J (1867) Essai sur la géologie et les ressources minérales de la Nouvelle- Calédonie. Ann Mines Paris 6:1–92.Google Scholar
  20. Gerth J (1990) Unit-cell dimensions of pure and trace metal associated goethites. Geochim CosmochimActa 54 (2):363–371.CrossRefGoogle Scholar
  21. Golightly JP (1981) Nickeliferous laterite deposits. Econ Geol 75:710–735.Google Scholar
  22. Kuhnel RA, Roorda HJ, Steensma JJ (1978) Distribution and partitioning of elements in nickeliferous latentes. Bull BRGM Paris Sect 11:191–206.Google Scholar
  23. Lelong F, Tardy Y, Grandin G, Trescases JJ, Boulangé B (1976) Pedogenesis, chemical weathering, and processes of formation of some supergene ore deposits. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 3. Elsevier, Amsterdam, pp 93–173.Google Scholar
  24. Maksimovic Z (1966) B-kerolite-pimelite series from Goles Mountain, Yougoslavia.Proc 2nd Int Clay Conf, Jerusalem, 1966, pp 97–105.Google Scholar
  25. Maksimovic Z (1975) The isomorphous series lizardite-nepouite. Int Geol Rev 17:1035–1040.CrossRefGoogle Scholar
  26. Manceau A, Calas G (1986) Nickel-bearing clay minerals 2. X-ray absorption study of Ni-Mg distribution. Clay Min 21:341–360.Google Scholar
  27. Manceau A, Calas G, Decarreau A (1985) Nickel-bearing clay minerals. I. Optical study of nickel crystal chemistry. Clay Min 20:367–387.Google Scholar
  28. Manceau A, Llorca S, Calas G (1987) Crystal chemistry of Co and Ni in lithiophorite and asbolane from New Caledonia. Geochim Cosmochim Acta 51:105–113.CrossRefGoogle Scholar
  29. Maquet M, Cervelle BD, Gouet G (1981) Signatures of Ni2 and Fe3 in the optical spectra of limonitic ore from New Caledonia: application to the determination of the nickel content. Miner Deposita 16:357–373.CrossRefGoogle Scholar
  30. Melfi AJ Trescases JJ, Oliveira SMB (1980) Les latentes nickélifères du Brésil. Cahi ORSTOM Sér Géol 11:15–42.Google Scholar
  31. Melfi AJ, Trescases JJ, Carvalho A, Oliveira SMB, Ribeiro Riho E, Formoso ML (1988) The lateritic ore deposits of Brazil. Sci Géol Bull (Strasb) 41:5–36.Google Scholar
  32. Millot G (1964) Géologie des argiles. Masson, Paris, 499 pp.Google Scholar
  33. Millot G (1982) Weathering sequences“.Climatic”planations.Leveled surfaces and paleosurfaces. Proc 7th Int Clay Conf AIPEA, Bologne-Pavia. Dev Sedimentol 35:585–593.Google Scholar
  34. Millot G, Bonifas M (1955) Transformations isovolumétriques dans les phénomènes de latéritisation et bauxitisation. Bull Serv Carte Géol Als Lorr (Strasb) 8:3–20.Google Scholar
  35. Nahon D (1985) Evolution of iron crusts in tropical landscapes. In: Colman M, Dethiver X (eds) Rates of chemical weathering of rocks and minerals.Academic Press, New York, pp 168–191.Google Scholar
  36. Nahon D (1987) Microgeochemical environments in lateritic weathering. In: Rodriguez-Clemente RJardy Y (eds) Geochemistry and mineral formation in the earth Surface. Consejo Superior de Investigaciones Científicas, Madrid, pp 141–156.Google Scholar
  37. Oliveira SMB, Trescases JJ (1980) Geoquimica da alteração supergena das rochas uitramaficas de Santa Fé (Goias-Brazil). Revista Brasileira de Geociências, São Paulo 15:243–257.Google Scholar
  38. Oliveira SMB, Trescases JJ (1985) O deposito de niquel de Jacupiranga (SP):evolução mineralogica e geoqumica. Revista Brasileira de Geociências, São Paulo 15:249–254.Google Scholar
  39. Oliveira SMB, Trescases JJ, Melfi AJ (1992) Lateritic nickel deposits of Brazil. Miner Deposita 27:137–146. CrossRefGoogle Scholar
  40. Ouangrawa M (1990) Etude des composés du fer dans I’altération latéritique de roches ultrabasiques. Exemples de Nouvelle-Calédonie et du Burkina Faso (Ton-Brédié). Thèse Univ Poitiers, 148 pp.Google Scholar
  41. Ouangrawa M, Trescases JJ, Ambrosi JP (1996) Evolution des oxydes de fer au cours de I’altération supergène de roche ultrabasique de Nouvelle Calédonie. CR Acad Sci Paris 323(lla):243–249.Google Scholar
  42. Paquet H, Colin F, Duplay J, Nahon D, MillotG (1987) Ni, Mn, Zn, Cr-smectites, early and effective traps for transition elements in supergene ore deposits. In: Rodriguez-Clemente R, Jardy Y (eds) Geochemistry and mineral formation in the Earth surface. Consejo Superior de Investigaciones Científicas. Madrid, pp 221–229.Google Scholar
  43. Schellmann W (1978) Behavior of nickel, cobalt and chromium in ferruginous lateritic nickel ores. Bull BRGM Paris Sect 11:275–282.Google Scholar
  44. Schellmann W (1983) Geochemical principles of lateritic nickel ore formation. 2nd Int Seminar of Lateritisation Processes, São Paulo. In: Melfi AJ, Carvalho A (eds) Lateritisation processes. Instituto Astronômico e Geofisico, Univ Säo Paulo, Brazil, pp 119–135.Google Scholar
  45. Schwertmann U, Latham M (1986) Properties of iron oxides in some New Caledonian oxisols. Geoderma 39:105–123.CrossRefGoogle Scholar
  46. Tardy Y (1969) Géochimie des altérations.Etude des arènes et des eaux de quelques massifs cristallins d’Europe et d’Afrique. Mém Serv Carte Géol Als Lorr (Strasb) 31:199.Google Scholar
  47. Tardy Y, Nahon D (1985) Stability of Al-goethite, Al-Hematite, Fe3-kaolinite-kaolinite in bauxites, ferricretes and latentes. An approach of the mechanism of the concretion formation. Am J Sci 285:865–903.Google Scholar
  48. Trescases JJ (1975) L’évolution supergène des roches ultrabasiques en zone tropicale. Mém ORSTOM Paris 78:259 pp.Google Scholar
  49. Trescases JJ (1979) Remplacement progressif des silicates par les hydroxydes de fer et de nickel dans les, profils d’altération tropicale des roches ultrabasiques Accumulation résiduelle et épigénie. Sci Géol Bull (Strasb) 32:181–188.Google Scholar
  50. Trescases JJ, Dino R, Oliveira SMB (1987) Un gisement de nickel supergène en zone semi-aride:São Joãodo Piaui (Brésil).53: Rodriguez-Clemente R, Jardy Y (eds) Geochemistry and mineral formation in the earth surface. Consejo Superior de Investigaciones Cientificas, Madrid, pp 273–288.Google Scholar
  51. Troly G, Esterle M, Pelletier B, Reibeil W (1979) Nickel deposits in New Caledonia:some factors influencing their formation. Proc Int Symp on Lateritisation Processes, New-Orleans, 1979, pp 81–119.Google Scholar
  52. Turekian KK (1978) Nickel (section B-0).In:Wedepohl KH (ed) Handbook of geochemistry.Springer, Berlin Heidelberg NewYork, p 37.Google Scholar
  53. Zeissink HE (1969) The mineralogy and geochemistry of a nickeliferous laterite profile (Greenvale, Queensland, Australia). Miner Deposita Berlin 4:132–152.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

There are no affiliations available

Personalised recommendations