Advertisement

Concomitant Alteration of Clay Minerals and Organic Matter During Burial Diagenesis

Chapter

Abstract

Georges Millot and his collaborators, in working on the genesis of clays during pedogenic or sedimentological evolutions, had no choice but to deal with diagenetic burial alteration to explain, in ancient sediments, the mineral assemblages which often constitute the source rocks of soils and sediments via erosion/alteration processes. Georges Millot claimed, in a famous shortcut, that any diagenetic alteration is characterized by a reduction of the number of argillaceous minerals to two types: micas and chlorites. This diagenetic evolution could even be delineated into stages in considering the clay mineral parageneses. On the basis of results obtained by Burst (1959), Weaver (1958) and Grim’s «school», Georges Millot emphasized the importance of argillaceous minerals in petroleum prospection, as well as lithostratigraphic markers in azoic series and evolution markers during burial diagenesis. Thus, he contributed to the creation of a scientific community providing thousands of studies in many basins of different ages, across the five continents.

Keywords

Clay Mineral Source Rock Mixed Layer Maturation Stage Liquid Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpern B (1980) Pétrographie du kérogène. In: Durand B (ed) Kerogen, insoluble organic matter from sedimentary rocks. EditionsTechnip, Paris, pp 39–384.Google Scholar
  2. Alpern B, Cheymol D (1978) Reflectance et fluorescence des organoclastes duToarcien du bassin de Paris en function de la profondeur et de la temperature. Rev Inst Fr Pétrol 33/4:515–535.Google Scholar
  3. Altaner SP, Hower J, Whitney G, Aronson JL (1984) Model for K-bentonite formation:evidence from zoned K-bentonites in the disturbed belt, Montana. Geology 12:412–415.CrossRefGoogle Scholar
  4. Arronson JL, Hower J (1976) Mechanism of burial metamorphism of argillaceous sediment. 2. Radiogenic argon evidence. Geol Soc Am Bull 87:738–744.CrossRefGoogle Scholar
  5. Asakawa T, Fujïta Y (1979) Organic metamorphism and hydrocarbon generation in sedimentary basins of Japan. Proc Seminar on Generation and maturation of hydrocarbon in sedimentary basins, Manila, 1977, pp 142–162.Google Scholar
  6. Barker CE (1983) Influence of time on metamorphism of sedimentary organic matter in liquid dominated geothermal systems, western North America. Geology 11:384–388.CrossRefGoogle Scholar
  7. Barker CE (1989) Temperature and time in the thermal maturation of sedimentary organic matter. ln:Naeser ND, MacCullohTH (eds)Thermal history of sedimentary basins. Methods and case history. Springer, Berlin Heidelberg NewYork, pp 75–98.Google Scholar
  8. Boles JR, Franks SG (1979) Clay diagenesis in Wilcox Sandstones of southwestTexas.J Sediment Petrol 49:55–70.Google Scholar
  9. Bostick NH, Foster JM (1975) Comparison of vitrinite reflectance in coal seams and in kerogen of sandstones, shales and limestones in the same part of a sedimentary section. Coll Int Pétro Matière Organique des Sediments, CNRS, Paris, 15–17 Sept 1973, pp 14–25.Google Scholar
  10. Brindley GW, Brown G (eds) (1980) Crystal structure of clay minerals and their X-ray identification. Monograph 5. Mineralogical Soc, London, 495 pp.Google Scholar
  11. Brown G (ed) (1961) The X-ray identification and crystal structures of clay minerals. Mineralogical Soc, London, 544 pp.Google Scholar
  12. BuiskoolToxopeus JMA (1983) Selection criteria for the use of vitrinite reflectance as a maturity tool. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Blackwell, London, pp 295–307.Google Scholar
  13. Burkhard M (1988) L’Helvétique de la bordure occidentale du massif de l’Aar (evolution tectonique et métamorphique). Eclog Geol Helv 81:63–114.Google Scholar
  14. Burnham AK, Sweeney JJ (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochim Cosmochim Acta 53:2649–2657.CrossRefGoogle Scholar
  15. Burnham AK, Oh MS, Crawford RW, Samoun AM (1989) Pyrolysis of the Argonne premium coals: activation energy distributions and related chemistry. Energy Fuels 3:42–55.CrossRefGoogle Scholar
  16. Burst JF (1959) Post diagenetic clay mineral environmental relationship in the Gulf Coast Eocene. 6th Natl Conf 1957, Berkeley, Clays Clay Min, pp 327–341.Google Scholar
  17. Burst JF (1969) Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. Bull Am Assoc Petrol Geol 53:73–93.Google Scholar
  18. Chamley H (ed) (1989) Clay sedimentology. Springer, Berlin Heidelberg NewYork,623 pp.Google Scholar
  19. Connan J (1974) Time-temperature relationship in oil genesis. Am Assoc Petrol Geol Bull 58:2516–2521.Google Scholar
  20. Cornelius CD (1975) Geothermal aspects of hydrocarbon exploration in the North-Sea Area. Nor Geol Unders 316:29–67.Google Scholar
  21. Cramez-Dias C, Kübler B (1982) Les gaz adsorbés (C1 à C4) dans huit puits de l’offshore du Labrador. Impact de la sismographie sur I’nterpretation de la maturation, de la migration et de la genèsedes hydrocarbures. Notes Mémjotal (CFP) 17:22–33.Google Scholar
  22. Doligez B, Bessis F, Burrus J, Ungerer P, Chenet PY (1986) Integrated numerical simulation of the sedimentation, heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin. The THEMIS model. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris, p 173Google Scholar
  23. Dow WG (1978) Petroleum source beds on continental slopes and rises. Am Assoc Petrol Geol Bull 62:1584–1606.Google Scholar
  24. Dunoyer de Segonzac G (1969) Les minéraux argileux dans la diagenèse. Passage au métamorphisme. Mém Serv Carte Géol Als Lorr (Strasb) 29:320 pp.Google Scholar
  25. Durand B, Oudin JL (1979) Exemple de migration des hydrocarbures dans une série déltaïque: Ie delta de Mahakam. Proc 10th World Petr Congr Bucarest, Romania, 1, pp 1–9.Google Scholar
  26. Durand B, Ungerer P, Chiarelli A, Oudin JL (1984) Modélisation de la migration de l’huile.Application à deux exemples de bassins sédimentaires. Proc 11th World Petr Congr, London, pp 1–13.Google Scholar
  27. Durand B, Alpern B, Pittion JL, Pradier B (1986) Reflectance of vitrinite as a control of the thermal history of sediments. In: Burrus J (ed) Thermal modeling in sedimentary basins. IFP Research Conf on Exploration, Editions Technip, Paris, pp 441–474.Google Scholar
  28. Espitalié J (1986) Use ofTmax as a maturation index for diffrent types of organic matter. Comparison with vitrinite reflectance. In: Burrus J (ed) Thermal modeling in sedimentary basins. IFP Research Conf on Exploration. Editions Technip, Paris, pp 475–496.Google Scholar
  29. Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Rev Inst Fr Petrol 40:563–579.Google Scholar
  30. Francu J, Rudinec R, Simanec V (1989) Hydrocarbon generation zone irithe East Slovak Neogen Basin: model and geochemical evidence. Geol Carpathica, 40:355–384.Google Scholar
  31. Freed RL (1980) Shale mineralogy and burial diagenesis in four geopressured wells, Hidalgo and Brazoria cöunties, Texas. ln:Loucks RG, Richmann DL, Milliken KL (eds) Factor controlling reservoir quality. ln:Tertiary sandstones and their significance to geopressured geothermal productions. Division of the Geothermal Energy, US Department of Energy Contract No DOE/ET/2711–1, AppendixA, pp 111–172.Google Scholar
  32. Freed RL, Peacor DR (1989) Geopressured shale and sealing effect of smectite to illite transition. Am Assoc Petrol Geol Bull 73:1223–1232.Google Scholar
  33. Freed RL, Peacor DR (1992) Diagenesis and the formation of authigenic illite-rich l/S crystals in Gulf Coast Shales: TEM study of clay separates. J Sediment Petrol 62:220–234.Google Scholar
  34. Fritz B (1981) Etude thermodynamique et simulation des reactions hydrothermales et diagéné-tiques. Sci Géol Mém (Strasb) 65:179 pp.Google Scholar
  35. Füchtbauer H, Goldschmidt H (1963) Beobachtungen zurTon-Mineral Diagenese. 1 st Int Glay Conf, Göttingen, vol1, pp 99–111.Google Scholar
  36. Galway AK (1969) Heterogeneous reaction in petroleum genesis and maturation. Nature 223:1257–1260.CrossRefGoogle Scholar
  37. Grim RE (1953) Clay mineralogy. McGraw-Hill, London, 384 pp.Google Scholar
  38. Grim RE (1958) Concept of diagenesis in argillaceous sediments. Am Assoc Petrol Geol Bull 42:246–253.Google Scholar
  39. HerouxY, Chagnon A, Bertrand A (1979) Compilation and correlation of major thermal maturation parameters. Am Assoc Petrol Geol Bull 63:2128–2144.Google Scholar
  40. Heroux Y, Bertrand R, Chagnon A, Connan J, Pittion JL, Kubier B (1981) Evolution thermique et potentiel pétroligène par l’étude des kérogènes, des extraits organiques des gaz adsorbes, des argiles du sondage Karlsefni H-13 (Offshore Labrador Canada). Can J Earth Sci 18:1856–1877.CrossRefGoogle Scholar
  41. Hood A, Gutjahr CCM (1972) Organic metamorphism and the generation of petroleum. Pap Annu Meet Geol Soc Am, Minneapolis 1972.Google Scholar
  42. Hood A, Gutjahr CCM, Heacock CL (1975) Organic metamorphism and the generation of petroleum. Bull Am Assoc Petrol Geol 59:986–996.Google Scholar
  43. Howard SA, Preston KD (1989) Profile fitting of powder diffraction patterns. Rev Mineral 20:217–272.Google Scholar
  44. Hower J, Eslinger EV, Hower ME, Perry EA (1976) Mechanism of burial metamorphism of argillaceous sediment. 1. Mineralogical and chemical evidence. Am Assoc Petrol Geol Bull 87:725–737.CrossRefGoogle Scholar
  45. Johns WD, Shimoyama A (1972) Clay minerals and petroleum forming reactions during burial and diagenesis. Am Assoc Petrol Geol Bull 56:2160–2167.Google Scholar
  46. Karweil J (1975) The determination of paleotemperature from the optical reflectance of coaly particles in sediments. Coll Int Pétro Matière Organique des Sediments, CNRS, Paris 1973, pp 195–203.Google Scholar
  47. Kisch HJ (1987) Correlation between indicators of very low-grade metamorphism. In: Frey M (ed) Low temperature metamorphism. Blackwell, Oxford, pp 227–300.Google Scholar
  48. Kübler B (1966) La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. In: Coll sur les étages tectoniques. A la Baconnière, Neuchätel, pp 105–122.Google Scholar
  49. Kübler B (1979) Adsorbed gases, C1 to C4 in relation to petroleum exploration. In: Generation and maturation of hydrocarbons in sedimentary basins. Proc Seminar, Manilajech Pubi 6, pp 81–97.Google Scholar
  50. Kübler B (1980) Les premiers Stades de la diagenèse organique et de la diagenèse minerale. 2. Zonéog-raphie par les transformations minéralogiques, comparaison avec la reflectance de la vitrinite, les extraits organiques et les gaz adsorbes. Bull Ver Schweiz Petrol Geol Ing 46:110–122.Google Scholar
  51. Kübler B (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse.Tem-pérature et calorimetrie. In: Lagache M (ed) Thermométrie et barométrie géologique. Soc Fr Miner Crist, Paris, pp 489–596.Google Scholar
  52. Kübler B, Betrix MA, Monnier F (1979a) Les premiers Stades de la diagenèse minerale, une tentative d’équivalence. 1.Zonéographie par la maturation de la matière organique. Bull Ver Schweiz Petrol Geol Ing 45(108):1–22.Google Scholar
  53. Kübler B, Pittion JL, Heroux Y, Charollais J, Weidmann M (1979b) Sur le pouvoir réflecteur de la vitrinite dans quelques roches du Jura, de la molasse et des nappes préalpines, helvétiques et pen-niques (Suisse occidentale et Haute-Savoie). Eclog Geol Helv 72:347–373.Google Scholar
  54. Kübler B, Cramez-Diaz C, Bertrand R, Desjardins M (1982) Les hydrocarbures gazeux adsorbes dans les sediments: leur utilisation en exploration petrolière. Notes Mémjotal (CFP) 13:50 pp.Google Scholar
  55. Le Tran K, Connan J, De la Pasture BM (1974) Diagenesis of organic matter and occurrence of hydrocarbon and hydrogen sulfide in the SW Aquitaine Basin (France). Bull Centre Rech Pau-SNPA 8:111–137.Google Scholar
  56. Lopatin NV(1971)Temperature and geologic time as factors in coalification.Akad NaukURSS, Serv Geol Izbestiya 3:96–106 (Translation by NW Bostick).Google Scholar
  57. McCartney JT, Ergun S (1967) Optical properties of coals and graphite. US Bur Mines Bull 641:1–49.Google Scholar
  58. Millot G (1964) Geologie des Argües. Masson, Paris, 499 pp.Google Scholar
  59. Milne IH, Early JW (1958) Effect of source and environment on clay minerals. Am Assoc Petrol Geol Bull 42:328–338.Google Scholar
  60. Monnier F (1982) Thermal diagenesis in the Swiss molasse Basin: implications for oil generation. Can J Earth Sci 19:328–342.CrossRefGoogle Scholar
  61. Moore DM, Reynolds RC Jr (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford Univ Press, Oxford, 332 pp.Google Scholar
  62. Oberlin A, Boulimier JL, Villey M (1980) Electron microscopy of kerogen microstructure selected criteria for determining the evolution path and evolution stage of kerogen. In: Durand B (ed) Kerogen. Technip, Paris, pp 191–241.Google Scholar
  63. Pearson MJ, Watkins D, Small JS (1982) Clay diagenesis and organic maturation in northern sea sediments. In: van Olphen H, Veniale F (eds) Developments in sedimentology 35. Proc Int Clay Conf, Bologna, 1981. Elsevier, Amsterdam, pp 665–675.Google Scholar
  64. Perry EA Jr, Hower J (1970) Burial diagenesis of Gulf Coast pelitic sediments.Clays Clay Min 18:165–177.Google Scholar
  65. Pochon M (1978) Origine et evolution des sols du Haut Jura Suisse. Mém Soc Helv Sci Nat 90:190 pp.Google Scholar
  66. Powers MC (1959) Clay diagenesis in the Chesapeake Bay area. Clays Clay Min, Natl Acad Sci Nat Res Council, Washington, DC, Pubi 327, pp 68–80.Google Scholar
  67. Pusey WC III (1973) How to evaluate potential gas and oil source rock. World Oil 176:71–75.Google Scholar
  68. Pytte AM, Reynolds RC Jr (1989) The kinetics of the smectite to illite reaction in contact metamorphism shales. In: Naeser ND, McCulloh TH (eds) The thermal history of sedimentary basins, Springer, Berlin Heidelberg New York, pp 133–140.Google Scholar
  69. Reynolds RC Jr (1980) Interstratifíed clay minerals. In: Brindley GW, Brown G (eds) Crystal structures of the clay minerals and their X-ray identification. Monograph 5. Minerological Soc, London, 495 pp.Google Scholar
  70. Reynolds RC Jr, Hower J (1970) The nature of interlaying in mixed-layer illite-montmorillonite. Clays Clay Min 18:25–36.CrossRefGoogle Scholar
  71. Robert M (1972) Transformation experiméntale des micas en vermiculite ou smectites. Propriétés des smectites de transformation. Bull Groupe Fr Argiles 24:137–151.Google Scholar
  72. Robert P (1985) Histoire géothermique et diagenèse organique. Centre Rech Explor-Prod Elf-Aquitaine Mém 8, Pau, France, 345 pp.Google Scholar
  73. Rolli M (1991) Appreciation des taux de couches gonflantes selon Reynolds (1980) par désommation selon Pearson VII, des pics des micas détritiques et des interstratifiés. Cahiers de I’Institut de Geologie de Neuchätel, Suisse, 6 pp.Google Scholar
  74. Rouzaud JN (1984) Relation entre la microstructure et les propriétés des matériaux carbones. Application à la caractérisation des charbons. Thèse, Univ Orléans, 138 pp.Google Scholar
  75. Rouzaud JN, Oberlin A (1984) Contribution of high resolution transmission electron microscopy (TEM) to organic materials characterization and interpretation of their reflectance. InrDurand B (ed)Thermal phenomena in sedimentary basins.EditionsTechnip, Paris, pp 127–134.Google Scholar
  76. Rumeau JL, Sourisse C (1972) Compaction, diagenèse et migration dans les sediments argüeux. Bull Centre Rech Pau-SNPA 6:313–346.Google Scholar
  77. Schoonmaker J, FredT, Mackenzie J (1986) Tectonic implications of Illite/Smectite diagenesis, Barbados accretionnary prism. Clays Clay Min 34:465–472.CrossRefGoogle Scholar
  78. Sommer F (1978) Diagenesis of Jurassic sandstones in the Viking graben. J Geol Soc 135:63–67.CrossRefGoogle Scholar
  79. Srodon J (1984) X-ray powder diffraction identification of illitic materials. Clays Clay Min 32:337–349.CrossRefGoogle Scholar
  80. Srodon J, Eberl DD (1987) Illite. In: Bailey SW (ed) Micas. Rev Mineral 13, Miner Soc Am, Washington, DC, 584 pp.Google Scholar
  81. Staplin F (1969) Sedimentary organic matter.Organic metamorphism and oil gas occurrence. Bull Can Petrol Geol 1711:47–66.Google Scholar
  82. Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Bull Am Assoc Petrol Geol 74:1559–1570.Google Scholar
  83. Teichmüller M (1971) Anwendung kohlenpetrographischer Methoden bei der Erdöl-Erdgasprospektion. Erdöl Kohle 24:69–76.Google Scholar
  84. Timofeev PP, Bogoliyubova LI (1970) Poastsedimentsionnyye izmenenia organicheskogo vesh-chestva zavisimosti ot lithologicheskikh tipov porod i fatisial’nykh uslovity ikh nakolenyia (Post-sedimentational changes of organic matter in relation to lithology and depositional facies). In:Vassoyevitch NB (ed) Organicheskoye veschestrvo sovremennykh i iskopayemikh osadkov. Nauka Press, Moscow, pp 169–190.Google Scholar
  85. Tissot BP (1969) Premières données sur les mécanismes et cinétique de la transformation du pétrole dans les sediments, simulation d’un schéma réactionnel sur ordinateur. Rev Inst Fr Pétrol 24:470–501.Google Scholar
  86. Tissot BP, Espitalié J (1975) devolution thermique de la matière organique des sédiments:application d’une simulation mathématique. Rev Inst Fr Pétrol 30:734–777.Google Scholar
  87. Tissot BP, Welte DH (1978) Petroleum formation and occurrence. A new approach to oil and gas exploration.Springer, Berlin Heidelberg New York,538 pp.Google Scholar
  88. Tissot BR Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin Heidelberg New York, 699 pp.Google Scholar
  89. Tissot BP, Pelet R, Roucaché J, Combaz A (1975) Utilisation des alcanes comme fossiles géochimiques indicateurs des environnements géologiques. In: Campos R, Goni J (eds) Proc 7th Int Meet on Organic geochemistry, Madrid, 1975, pp 117–154.Google Scholar
  90. Ungerer P, Espitalié J, Marquis F, Durand B (1986) Use of kinetic models of organic matter evolution for the reconstruction of paleotemperatures. Application to the case of the Gironville Well (France). In: Burrus J (ed) Thermal modeling in sedimentary basins. IFP Research Conf on Exploration, Editions Technip, Paris, pp 531–546.Google Scholar
  91. Wapples DW (1980) Time and temperature in petroleum formation:application of Lopatin’s method to petroleum exploration. Am Assoc Petrol Geol Bull 64:916–926.Google Scholar
  92. Wapples DW (1981) Organic Geochemistry for exploration geologists. Burgess, p 103.Google Scholar
  93. Weaver CE (1956) The distribution and identification of mixed-layer clays in sedimentary rocks. Am Mineral 41:202–221.Google Scholar
  94. Weaver CE (1956) Mixed-layers in sedimentary rocks. Am Mineral 41:202–221.Google Scholar
  95. Weaver CE (1958) The effect and geologic significance of potassium «fixation» by expandable clay minerals derived from muscovite, biotite, chlorite and volcanic material. Am Mineral 43:839–861.Google Scholar
  96. Weaver CE (1960) Possible use of clay minerals in the search for oil. Am Assoc Petrol Geol Bull 44:1505–1518.Google Scholar
  97. Weaver CE (1989) Clays, muds, and shales. Developments in sedimentology 44. Elsevier, Amsterdam, 819 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

There are no affiliations available

Personalised recommendations