Advertisement

Revisited Isotopic Dating Methods of Sedimentary Minerals for Stratigraphic Purpose

Chapter
  • 625 Downloads

Abstract

Cormier (1956) and Wasserburg et al. (1956) initiated many isotopic investigations of sedimentary minerals and whole rocks for stratigraphic purposes. Since this pioneering period, different approaches have been evaluated to identify the isotopic signatures of mineral components which may set reasonably narrow limits to the time of deposition of sediments. Many contradictory opinions have been expressed about the merits of these approaches and the significance of the various isotopic signatures in relation to the stratigraphic ages of the studied minerals. It is obvious from analysis of the available literature, that questionable dates were often generated without the necessary efforts to delineate clearly the origin of the analysed materials and to evaluate the potential impact of mineral impurities on the final dates.

Keywords

Isotopic Composition Clay Mineral Secular Variation Sedimentary Mineral Radiogenic Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allègre CJ, Caby R (1972) Chronologie absolue du Précambrien de I’Ahaggar occidental. CR Acad Sci Paris 275, D:2095–2098.Google Scholar
  2. Amouric M, Parron C (1985) Structure and growth mechanism of glauconite as seen by high resolution transmission electron microscopy.Clays Clay Min 33:473–482.CrossRefGoogle Scholar
  3. Baadsgaard H (1987) Rb-Sr and K-Ca isotope systematics in minerals from potassium horizons in the Prairie Evaporiteformation, Saskatchewan, Canada. Chem Geol 66:1–15.Google Scholar
  4. Bath AH (1977) Experimental observation of exchange of Rb and Sr between clays and solution. 2nd Int Symp on Water-rock interaction, Strasbourg, France, IV, 244–249.Google Scholar
  5. Bernat M, Bieri RH, Koide M, Griffin JJ, Goldberg ED (1970) Uranium, thorium, potassium and argon in marine phillipsites. Geochim Cosmochim Acta 34:1053–1072.CrossRefGoogle Scholar
  6. Birch GF, Willis JP, Rickard RS (1976) An electron microprobe study of glauconites from the continental margin off the west coast of S. Africa. Mar Geol 22:271–284.CrossRefGoogle Scholar
  7. Blanco JA, Corrochano A, Montigny R, Thuizat R (1982) Sur Tage du début de la sedimentation dans Ie bassin tertiaire du Duero (Espagne). Attribution au Paleocene par datation isotopique des alunites de l’Unite inférieure. CR Acad Sci Paris 295/11:259–262.Google Scholar
  8. Bofinger VM, Compston W, Vernon MJ (1968) The application of acid leaching to the Rb-Sr dating of a Middle Ordovician shale. Geochim Cosmochim Acta 32:823–833.CrossRefGoogle Scholar
  9. Brereton NR, Hooker PT, Miller JA(1976) Some conventional potassium-argon and 40Ar/39Arage studies on glauconite. Geol Mag 113:329–340.CrossRefGoogle Scholar
  10. Brookins DG (1980) Geochronologic studies in the Grants mineral belt. New Mex Bur Mines Min Res Mem 27:87–98.Google Scholar
  11. Bros R, Stille P, Gauthier-Lafaye F, Weber F, Clauer N (1992) Sm-Nd isotopic dating of Proterozoicclay material. Example from Francevillian sedimentary series (Gabon). Earth Planet Sci Lett 113:207–218.CrossRefGoogle Scholar
  12. Brueckner HK, Snyder WS (1979) Rb-Sr dating of chert: a potential chronological tool. Geol Soc Am Abstr Prog 11–2, San Jose, California, p 71.Google Scholar
  13. Burke WH, Denison RE, Hetherington EA, KoepnickRB, NelsonHF, OttoJB(1982)Variationofseawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519.CrossRefGoogle Scholar
  14. Burns SJ, Haudernschild U, Matter A (1994) The strontium isotopic composition of carbonates from the late Precambrian (ca. 560–540 Ma) Huqf Group of Oman. Chem Geol Isot Geosci Sect 111:269–282.Google Scholar
  15. Chaudhuri S, Clauer N (1992) History of marine evaporites: constraints from radiogenic isotopes. In: Clauer N, Chaudhuri S (eds) isotopic signatures and sedimentary records. Lecture Notes in Earth Sciences 43.Springer, Berlin Heidelberg NewYork, pp 177–198.CrossRefGoogle Scholar
  16. Chester R (1990) Marine geochemistry.Unwin Hyman, London, 698 pp.Google Scholar
  17. Clauer N (1974) Utilisation de la méthode rubidium-strontium pour la datation d’une schistosité desédiments peu métamorphisés: application au Précambrien II de la boutonnière de Bou Azzer-El Graara (Anti-Atlas). Earth Planet Sci Lett 22:404–412.CrossRefGoogle Scholar
  18. Clauer N (1976) Géochimie isotopique du strontium des milieux sedimentares. Application à la géochronologie de la couverture du craton ouest-africain. Sci Géol Mém (Strasb) 45:256 pp.Google Scholar
  19. Clauer N (1982a) Strontium isotopes ofTertiary phillipsites from the Southern Pacific: timing of the geochemical evolution. J Sediment Petrol 52:1003–1009.Google Scholar
  20. Clauer N (1982b) The rubidium-strontium method applied to sediments: certitudes and uncertainties. In:Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 245–276.Google Scholar
  21. Clauer N, Chaudhuri S (1992) Indirect dating of sediment-hosted ore deposits: promises and problems. In: Clauer N, Chaudhuri S (eds) isotopic signatures and sedimentary records. Lecture Notes in Earth Sciences 43.Springer, Berlin Heidelberg New York, pp 361–388.Google Scholar
  22. Clauer N, Chaudhuri S (1995) Clays in crustal environments.Isotopic dating and tracing. Springer, Berlin Heidelberg NewYork,358 pp.Google Scholar
  23. Clauer N, Hoffert M, Grimaud D, Millot G (1975) Composition isotopique du strontium d’eaux interstitielles extraites de sediments récents: un argument en faveur de l’homogénéisation isotopique des minéraux argileux. Geochim Cosmochim Acta 39:1579–1582.CrossRefGoogle Scholar
  24. Clauer N, Hoffert M, Karpoff AM (1982a) The Rb-Sr isotope system as an index of origin and diagenet-ic evolution of southern Pacific red clays. Geochim Cosmochim Acta 46:2659–2664.CrossRefGoogle Scholar
  25. Clauer N, Caby R, Jeannette D, Trompette R (1982b) Geochronology of sedimentary and metasedimentary Precambrian rocks of the West African craton. Precambrian Res 18:53–71.CrossRefGoogle Scholar
  26. Clauer N, Giblin P, Lucas J (1984) Sr and Ar isotope studies of detrital smectites from the Atlantic Ocean (DSDP, Legs 43,48, and 50). IsotGeosci 2:141–151.Google Scholar
  27. Clauer N, O’Neil JR, Bonnot-Courtois C, Holtzappfel T (1990) Morphological, chemical and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments. Clays Clay Min 38:33–46.CrossRefGoogle Scholar
  28. Clauer N, Keppens E, Stille P (1992a) Sr isotopic constraints on the process of glauconitization. Geology 20:133–136.CrossRefGoogle Scholar
  29. Clauer N, Stille P, Keppens E, O’Neil JR. (1992b) Le mécánisme de la glauconitisation:apports de la géochimie isotopique du strontium, du néodyme et de l’oxygène de glauconies recentes. CR Acad Sci Paris 315/11:321–327.Google Scholar
  30. Clauer N, Chaudhuri S, Kralik M, Bonnot-Courtois C (1993) Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite. Chem Geol 103:1–16.CrossRefGoogle Scholar
  31. Clauer N, Srodon J, Francu J, Sucha W (1995) K-Ar dating of illite/smectite fundamental particles. Euroclay Conf, 19–25 Aug, Leuven, Belgium, 2 pp.Google Scholar
  32. Compston W, Pidgeon RT (1962) Rb-Sr dating of shales by the total-rock method. J Geophys Res 67:3493–3502.CrossRefGoogle Scholar
  33. Cordani UG, Kawashita K, Thomas-Filho A (1978) Applicability of the Rb-Sr method to shales and related rocks. Am Assoc Petrol Geol, Spec Pubi 6:93–117.Google Scholar
  34. Cordani UG, Thomaz-Filho A, Brito-Neves BB, Kawashita K (1985) On the applicability of the Rb-Sr method to argillaceous sedimentary rocks: some examples from Precambrian sequences of Brazil. Giorn Geol Ser 3,547:253–280.Google Scholar
  35. Cormier RF (1956) Rubidium-strontium ages of glauconite and their application to the construction of a Post-Precambrian time-scale.PhDThesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  36. Derry LA, Keto LS, Jacobsen SB, Knoll AH, Swett K (1989) Sr isotopic variations in Late Proterozoicvariations in Late Proterozoic carbonates from Svalbard and East Greenland. Geochim Cosmochim Acta 54:2331–2339.CrossRefGoogle Scholar
  37. Derry LA, Brasier MD, Corfield RM, Rozanov AYu, Zhuravlev AYu (1996) Sr isotopes in Lower Cambrian carbonates from the Siberian Craton: a paleoenvironmental record during the “Cambrian explosion”Earth Planet Sci Lett (in press).Google Scholar
  38. Dewolf CP, Halliday AN (1991) U—Pb dating of a remagnetized Paleozoic limestone.Geophys Res Lett18:1445–1448.CrossRefGoogle Scholar
  39. Doe BR (1970) Evaluation of U-Th-Pb whole-rock dating on Phanerozoic sedimentary rocks. Eclog Geol Helv 63:79–82.Google Scholar
  40. Faure G (1982) The marine-strontium geochronometer.In:0din GS (ed) Numerical dating in stratigraphy.Wiley, NewYork, pp 73–79.Google Scholar
  41. Faure G (1986) Principles of isotope geology,2ndedn.Wiley, NewYork,589 pp.Google Scholar
  42. Foland KA, Linder JS, Laskowski TE, Grant NK (1984) 40Ar/39Ar dating of glauconites: measured39Arrecoil loss from well-crystallized specimens. Chem Geol Isot Geosci Sect 2:241–264.Google Scholar
  43. Gorokhov IM, Clauer N, Turchenko TL, Melnikov NN, Kutyavin EP, Pirrus E, Baskakov AV(1994) Rb-Sr systematics of Vendian-Cambrian claystones from east European platform:implications for a multi-stage illite evolution. Chem Geol 112:71–89.CrossRefGoogle Scholar
  44. Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiller P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Miner Petrol 92:157–180.CrossRefGoogle Scholar
  45. Jahn BM (1988) Pb–Pb dating of young marbles from Taïwan. Nature 332:429–432.CrossRefGoogle Scholar
  46. Jahn BM, Bertrand-Sarfati J, Morin N, Macé J (1990) Direct dating of stromatolitic carbonates from the Schmidtdrif Formation (Transvaal dolomite), South Africa, with implications on the age of the Ventersdorp Supergroup. Geology 18:1211–1214.CrossRefGoogle Scholar
  47. Jahn BM, ChiWR, YuiTF (1992) A Late Permian formation ofTaïwan (marbles from Chia-Li well no.1): Pb-Pb isochron and Sr isotopic evidence, and its regional and geological significance. J Geol Soc China 35:193–218.Google Scholar
  48. Kaufman AJ, Jacobsen SB, Knoll AH (1994) The Vendían record of Sr- and C-isotopic variations in seawater/implications for tectonics and paleoclimate. Earth Planet Sci Lett 120:409–430.CrossRefGoogle Scholar
  49. Keppens E,0’Neil JR (1984) Oxygen isotope variations in glauconies.Terra Cognita, Spec lssue:42.Google Scholar
  50. Kolodny Y, Luz B (1992) Isotope signatures in phosphate deposits:Formation and diagenetic history. In: Clauer N, Chaudhuri S (eds) isotopic signatures and sedimentary records. Lecture Notes in Earth Sciences,43.Springer, Berlin Heidelberg NewYork, pp 69–122.CrossRefGoogle Scholar
  51. Kunk MJ, Brusewitz AM (1987) 39Ar recoil in an l/S clay from the Ordovician “Big Bentonite Bed” at Kinnekulle, Sweden. 21 st Annu Meet North-Central Section, April 1987, St Paul, Minnesota, Geol Soc Am, Abstr with Prog, 19, p 230.Google Scholar
  52. Liewig N, Clauer N, Sommer F (1987) Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone reservoirs. North Sea. Am Assoc Petrol Geol Bull 71:1467–1474.Google Scholar
  53. Moorbath S, Jaylor PN, Orpen JL, Treloar P, Wilson JF (1987) First direct radiometric dating of Archean stromatolitic limestone. Nature 326:865–867.CrossRefGoogle Scholar
  54. NäglerT, Schäfer JL, Gebauer D (1992) A Sm–Nd isochron on pelites 1 Ga in excess of their depositional age and its possible significance. Geochim Cosmochim Acta 56:789–795 Nicolaysen LO (1961) Graphic interpretation of discordant age measurements on metamorphicrocks. Ann NY Acad Sci 91:198–206.Google Scholar
  55. Merrihue CMJurner G (1966) Potassium-argon dating by activation with fast neutrons. J Geophys Res 71:2852–2857.Google Scholar
  56. Odin GS (1975) De glauconarium, origine, aetateque. Thèse Doc ès-Sci, Univ Paris VI, 280 pp.Google Scholar
  57. Odin GS (ed) (1982) Numerical dating in stratigraphy,2 vols.Wiley, Chichester, 1094 pp.Google Scholar
  58. Odin GS, Bonhomme MG (1982) Argon behaviour in clays and glauconies during preheating experiments. In:Numerical Dating in Stratigraphy. Wiley, pp 333–349.Google Scholar
  59. Odin GS, Dodson MH (1982) Zero isotopic age of glauconies. In: Odin GS (ed) Numerical Dating in Stratigraphy. Wiley, pp 277–305.Google Scholar
  60. Odin GS, Hunziker JC (1982) Radiometric dating of the Albian—Cenomanian boundary.In:Odin GS (ed) Numerical Dating in Stratigraphy. Wiley, pp 537–556.Google Scholar
  61. Odin GS, Matter A (1981) De glauconarium origine. Sedimentology 28:611–641.CrossRefGoogle Scholar
  62. Odin GS, Dodson MH, Hunziker JC, Kreuzer H (1979) Radiogenic argon in glauconies during their genesis. Bull Inform Int Geol Corr Prog, Project 133,6:7–8.Google Scholar
  63. Oesterlé FP, Lippolt HJ (1975) Isotopische Datierung der Langbeinitbildung in der Kalisalzlagerstätte des Fuldabeckens. Kali Steinsalz 11.391–398.Google Scholar
  64. Ohr M, Halliday AN, Peacor DR (1991) Sr and Nd isotopic evidence for punctuated clay diagenesi, Texas Gulf Coast. Earth Planet Sci Lett 105:110–126.CrossRefGoogle Scholar
  65. Peterman ZE, Hedge CE, Tourtelot HA (1970) isotopic composition of strontium in seawater throughout Phanerozoic time. Geochim Cosmochim Acta 34:105–120.CrossRefGoogle Scholar
  66. Reuter A, Dallmeyer RD (1987a) 40Ar/39Ar age spectra of whole-rock and constituent grain-size fractions from anchizonal slates. Chem Geol 66:73–88.Google Scholar
  67. Reuter A, Dallmeyer RD (1987b) 40Ar/39Ar dating of cleavage formation in tuffs during anchizonal metamorphism. Contrib Miner Petrol 97:352–360.CrossRefGoogle Scholar
  68. Schaltegger U, Stille P, Rais N, Piqué A, Clauer N (1994) Nd and Sr isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments. Geochim Cosmochim Acta 58:1471–1481.CrossRefGoogle Scholar
  69. Shanin LL, Ivanov IB, Shipulin FK (1968) The possible use of alunite in K-Ar geochronology. Ge-okhimyia 1:109–111.Google Scholar
  70. Smith PE, Farquhar RM (1989) Direct dating of Phanerozoic sediments by the 238U–206Pb method. Nature 341:518–521.CrossRefGoogle Scholar
  71. Smith PE, Farquhar RM, Hancock RG (1991) Direct radiometric age determination of carbonate diagenesis using U—Pb in secondary calcite. Earth Planet Sci Lett 105:474–491.CrossRefGoogle Scholar
  72. Stille P, Clauer N (1986) Sm—Nd isochron-age and provenance of the argillites of the Gunflint Iron Formation in Ontario, Canada. Geochim Cosmochim Acta 50:1141–1146.CrossRefGoogle Scholar
  73. Stille P, Clauer N (1994) The process of glauconitization. Chemical and isotopic evidence.Contrib.Mineral Petrol 117:253–262.CrossRefGoogle Scholar
  74. Stille P, Gauthier-Lafaye F, Bros R (1993) The Nd isotope system as a tool for petroleum research and exploration. Geochim Cosmochim Acta 5:4521–4525.CrossRefGoogle Scholar
  75. Stille P, Riggs S, Clauer N, Crowson R, Ames D, Snyder SW (1994) Sedimentation through one Miocene depositional cycle based on Sr and Nd isotopic analysis of phosphorite peloids: North Carolina continental shelf (Part 1). Mar Geol 117:253–273.CrossRefGoogle Scholar
  76. Taylor PN, Kaisbeek F (1990) Dating the metamorphism of Precambrian marbles: examples from Proterozoic mobile belts in Greenland. Chem Geol 86:21–28.Google Scholar
  77. Veizer J (1989) Strontium isotopes in seawater through time.Annu Rev Earth Planet Sci 17:141–167.CrossRefGoogle Scholar
  78. Veizer J (1992) Depositional and diagenetic history of limestones:Stable and radiogenic isotopes.In: Clauer N, Chaudhuri S (eds) Isotopic signatures and sedimentary records. Lecture Notes in Earth Sciences,43. Springer, Berlin Heidelberg New York, pp 13–48.CrossRefGoogle Scholar
  79. Wasserburg GJ, Hayden RI, Jensen KJ (1956) Ar40-K40 dating of igneous rocks and sediments. Geochim Cosmochim Acta 10:153–165.CrossRefGoogle Scholar
  80. Wickman FE (1948) Isotope ratios — a clue to the age of certain marine sediments. J Geol 56:61–66.CrossRefGoogle Scholar
  81. Yanase Y, Wampler JM, Dooley RE (1975) Recoil-induced loss of 39Ar from glauconite and other minerals.Trans Am Geophys Union 56:472.Google Scholar
  82. Zwingmann H (1995) Etude des conditions de mise en place des gaz naturels dans les réservoirs gréseux de la Rotliegende (Permien) en Allemagne. Aspects minéralogiques, géochimiques et isotopiques. Thèse, Univ Strasbourg, 189 p.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

There are no affiliations available

Personalised recommendations