Advertisement

Clay Mineral Sedimentation in the Ocean

Chapter

Abstract

Georges Millot’s thesis (1949) was on the «Relationships between the nature and genesis of argillaceous sedimentary rocks». His last scientific contribution was published in early 1991 a few months before he died and was entitled «About the abundance of smectite minerals in common marine sediments deposited during high sea level stages in late Jurassic-Paleogene times» (Chamley et al. 1990). Georges Millot’s first and last reviews were, therefore, devoted to clay sedimentation in marine environments where he defined the widely used terms of heritage, transformation and neoformation. This underscores the interest and energy that he deployed throughout his scientific life in order to better understand clay mineral sedimentation in the ocean in the course of the earth’s geological history. His scientific and didactic approaches are expressed in all the publications he was part of or wrote by himself, especially in the outstanding book that he published in 1964 (English version in 1970).

Keywords

Clay Mineral Clay Mineral Assemblage Paleoenvironmental Record Hellenic Trench Clay Mineral Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accarie H, Renard M, Deconinck J-F, Beaudoin B, Fleury J-J (1989) Géochimie des carbonates (Mn, Sr) et minéralogie des argües de calcaires pélagiques sénoniens. Relation avec l’eustatisme (Massif de la Maïella, Abruzzes, Italie). CR Acad Sci Paris 309/11:1679–1685.Google Scholar
  2. Ahn JH, Peacor DR (1986) Transmission and analytical electron microscopy of the smectite- to-illite transition. Clays Clay Min 34:165–179.CrossRefGoogle Scholar
  3. Ahn JH, Peacor DR (1987) Transmission electron microscopic study of the diagenesis of kaolinite in Gulf coast argillaceous sediments.In:SchultzLG, Van Olphen H, Mumpton FA (eds) VIII Proc Int Clay Conf, Denver 1985, The Clay Minerals Society, Bloomington, pp 151–157.Google Scholar
  4. Badaut D, Besson G, Decarreau A, Rautureau R (1983) Occurrence of a ferrous trioctahedral smectite in recent sediments of Atlantis II deep, Red Sea. Clay Min 20:389–404.CrossRefGoogle Scholar
  5. Bailey SW (1988) Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral. Clay Min 23:237–247.CrossRefGoogle Scholar
  6. Bonnot-Courtois C (1981) Géochimie des terres rares dans les principaux milieux de formation et de sédimentation des argües. These Doc es-Sci, Univ Paris-Sud, 230 pp.Google Scholar
  7. Bouquillon A, Chamley H, Fröhlich F (1989) Sedimentation argileuse au Cénozoïque supérieur dans l’Océan Indien nord-oriental. Oceanol Acta 12:133–147.Google Scholar
  8. Buatier IVI, Honnorez J, Ehret G (1989) Fe smectite-glauconitetransition in hydrothermal green clays from the Galapagos spreading center. Clays Clay Min 37:532–541.CrossRefGoogle Scholar
  9. Chamley H (1989) Clay Sedimentology. Springer, Berlin Heidelberg New York, 623 pp.Google Scholar
  10. Chamley H (1992) Clay Sedimentology. Encycl Earth Syst Sci 1:485–502.Google Scholar
  11. Chamley H, Debrabant P (1984) Paleoenvironmental history of the North Atlantic region from mineralogical and geochemical data. Sediment Geol 40:151–167.CrossRefGoogle Scholar
  12. Chamley H, Debrabant R, FIicoteaux R (1988) Comparative evolution of Senegal and eastern central Atlantic Basins, from mineralogical and geochemical investigations. Sedimentology 35:85–103.CrossRefGoogle Scholar
  13. Chamley H, Deconinck J-F, Millot G (1990) Sur l’abondance des minéraux smectitiques dans les sediments marins communs deposes lors des périodes de haut niveau marin du Jurassique supérieurau Paleogene. CR Acad Sei Paris 311/(II):1529–1536.Google Scholar
  14. Chamley H, Angelier J, Teng L (1993) Tectonic and environmental control of the clay sedimentation in the late Cenozoic orogen of Taiwan. Geodyn Acta 6:135–147.Google Scholar
  15. Clauer N, O’Neil JR, Bonnot-Courtois C, Holtzapffel T (1990) Morphological, chemical, and isotopie evidence for an early diagenetic evolution of detrital smectite in marine sediments. Clays Clay Min 38:33–46.CrossRefGoogle Scholar
  16. Debrabant P, Chamley H, Foulon J, Maillot H (1979) Mineralogy and geochemistry of upper Cretaceous and Cenozoic sediments from North Biscay Bay and Rockall Plateau (eastern North Atlantic), DSDP Leg 48. In: Montadert L, Roberts DG et al. (eds) Init Rep Deep Sea Drill Proj, 48. US Gov Print Office, Washington, pp 703–725.Google Scholar
  17. Debrabant P, Delbart S, Lemaguer D (1985) Microanalyses géochimiques de minéraux argileux de sediments prélevés en Atlantique Nord (forages du DSDP). Clay Min 20:125–145.CrossRefGoogle Scholar
  18. Debrabant P, Chamley H, Deconinck J-F, Recourt P and Trouiller A (1992) Clay sedimentology, mineralogy and chemistry of Mesozoic sediments drilled in the northern Paris Basin. Sci Drilling 3:138–152.Google Scholar
  19. Debrabant P, Fagel N, Chamley H, BoutV, Caulet J-P. (1993) Neogene to Quaternary clay mineral fluxes in the Central Indian Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 103:117–131.CrossRefGoogle Scholar
  20. Deconinck J-F (1987) Identification de l’origine détritique ou diagénétique des assemblages argileux: le cas des alternances marne-calcaire du Crétacé inférieur subalpin. Bull Soc Géol Fr 3:139–145.Google Scholar
  21. Deconinck J-F (1992) Sédimentologie des argües dans le Jurassique-Crétacé d’Europe occidentale et du Maroc. Mém Habilit Univ Lille 1,226 pp.Google Scholar
  22. Deconinck J-F, Amedro F, Desprairies A, Juignet R, Robaszinski F (1991) Niveaux repères de bentonite d’origine volcanique dans leTuronien du Boulonnais et de Haute-Normandie. CR Acad Sci Paris 312/(ll):897–903.Google Scholar
  23. Desprairies A, Jehanno C (1983) Paragenèses minerales liées à des interactions basalte- sédiment-eau de mer (sites 465 et 456 des legs 65 et 60 du D.S.D.P.). Sci Géol Bull (Strasb) 36:93–110.Google Scholar
  24. Fisher RV, Schmincke HU (1984) Pyroclasticrocks. Springer, Berlin Heidelberg New York,472 pp.Google Scholar
  25. Fröhlich F (1982) Evolution minéralogique dans les dépots azoíques rouges de l’océan Indien. Relations avec la stratigraphie. Bull Soc Géol Fr 14:563–571.Google Scholar
  26. Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Spec Pubi 42:71–107.Google Scholar
  27. Hoffert IVI (1980) Les «argües rouges des grands fonds» dans le Pacifique centre-est. Sci Géol Mém (Strasb) 61:257 p.Google Scholar
  28. Holtzapffel T, Chamley H (1986) Les smectites lattées du domarne Atlantique depuis le Jurassique supérieur: gisement et signification. Clay Min 21:133–148.CrossRefGoogle Scholar
  29. Huggett JM (1984) Controls on mineral authigenesis in Coal Measures sandstones and mudstones in theWestphalian Coal Measures using back-scattered electron microscopy. Clay Min 21:603–616.CrossRefGoogle Scholar
  30. Karlin R (1980) Sediment sources and clay mineral distributions off the Oregon coast. J Sediment Petrol 50:543–560.Google Scholar
  31. Karpoff A-M, Lagabrielle Y, Boillot G, Girardeau J (1989) L’authigenèse océanique de palygorskite par halmyrolyse de péridotites serpentinisées (marge de Galice): ses implications géodynamiques. CR Acad Sci Paris, 308/(ll):647–654.Google Scholar
  32. Kimblin RT (1992) The origin of clay minerals in the Coniacian chalk of London. Clay Min 27:389–392.CrossRefGoogle Scholar
  33. Latil-Brun MV, Flicoteaux R (1986) Subsidence de la marge sénégalaise, ses relations avec la structure de la croüte. Comparaison avec la marge conjuguée américaine au niveau du Blake-Plateau. Bull Centre Rech Pau 110:64–82.Google Scholar
  34. Levert J, Ferry S (1988) Diagenese argileuse complexe dans Ie Mésozoïque subalpin révélée par cartographie des proportions relatives d’argües selon des niveaux isochrones. Bull Soc Géol Fr 4:1029–1038.Google Scholar
  35. McMurtry GM, Wang C-H, Yeh H-W (1983) Chemical and isotopie investigations into the origin of clay minerals from the Galapagos hydrothermal mounds field. Geochim Cosmochim Acta 47:475–489.CrossRefGoogle Scholar
  36. Millot G (1949) Relations entre la constitution et la genèse des roches sédimentaires argileuses. Thèse, Univ Nancy, Géol Appi Prosp Min 2:1–352.Google Scholar
  37. Millot G (1964) Geologie des argües. Masson, Paris, 499 pp.Google Scholar
  38. Millot G (1970) Geology of clays.Springer, Berlin Heidelberg New York,425 pp.Google Scholar
  39. Nadeau PH, Jait JM, McHardy WJ, Wilson MJ (1984) Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Min 19:67–76.CrossRefGoogle Scholar
  40. Odin GS (ed) (1988) Green marine clays.Developments in sedimentology 45.Elsevier, Amsterdam, 445 pp.Google Scholar
  41. Paquet H (1970) Evolution géochimique des minéraux argüeux dans les alterations et les sols des climats méditerranéens et tropicaux à Saisons contrastées. Mém Serv Carte Géol Als Lorr (Strasb) 30:212 pp.Google Scholar
  42. Robert C (1982) Modalité de la sedimentation argileuse en relation avec l’histoire géologique de l’Atlantique Sud. Thèse, Univ Aix-Marseille II, 141 pp.Google Scholar
  43. Robert C (1987) Clay mineral associations and structural evolution of the South Atlantic Jurassic to Eocene. Palaeogeogr Palaeoclimatol Palaeoecol 58:87–108.CrossRefGoogle Scholar
  44. Robert C, Chamley H (1990) Paleoenvironmental significance of clay mineral associations at the Cretaceous-Tertiary passage.Palaeogeogr Palaeoclimatol Palaeoecol 79:205–219.CrossRefGoogle Scholar
  45. Robert C, Chamley H (1991) Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Palaeogeogr Palaeoclimatol Palaeoecol 89:315–331.CrossRefGoogle Scholar
  46. Sigl W, Chamley H, Fabricius F, Giroud D’Argoud G, Muller J (1978) Sedimentology and environmental conditions of sapropels. In: Hsü KJ, Montadert L et al. (eds) Init Rep Deep Sea Drill Proj, 42 A. US Gov Print Office, Washington, pp 445–464.Google Scholar
  47. Singer A, Galan E (1984) Palygorskite-sepiolite. Occurrences, genesis and uses. Developments in sedimentology 37.Elsevier, Amsterdam,352 pp.Google Scholar
  48. Srodon J, Eberl DD (1984) Hüte. In: Bailey SW (ed) Micas. Rev Miner 13, Miner Soc Am, Washington, pp 49–544.Google Scholar
  49. Steinberg M, Holtzapffel T, Rautureau M, Clauer N, Bonnot-Courtois C, Manoubi T, Badaut D (1984) Croissance cristalline et homogénéisation chimique de monoparticules argileuses au cours de la diagenèse. CR Acad Sci Paris 299/11:441–446.Google Scholar
  50. Stonecipher SA (1976) Origin, distribution and diagenesis of phillipsite and clinoptilolite in deep-sea sediments. Chem Geol 17:307–318.CrossRefGoogle Scholar
  51. Thiry M (1981) Sédimentation continentale et altérations associées: calcitisations, ferruginisations et silicifications. Les argües plastiques du Sparnacien du Bassin de Paris. Sci Géol Mém (Strasb) 84:173 pp.Google Scholar
  52. Thiry M, JacquinT (1993) Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic Ocean. Clay Min 28:61–84.CrossRefGoogle Scholar
  53. Trauth N (1977) Argües évaporitiques dans la sédimentation carbonatée continentale et epicontinental tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France), Jbel Ghassoul (Maroc). Sei Géol Mém (Strasb) 49:203 pp.Google Scholar
  54. Van Houten FB, Purucker ME (1984) Glauconite peloids and chamositic ooids. Favorable factors, constraints, and problems. Earth Sci Rev 20:211–243.CrossRefGoogle Scholar
  55. Weaver CE (1989) Clays, muds, ánd shales. Developments in sedimentology 44. Elsevier, Amsterdam, 819 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

There are no affiliations available

Personalised recommendations