On the Genesis of Sedimentary Apatite and Phosphate-Rich Sediments



Igneous rocks consist essentially of silicate minerals which are unstable at the earth’s surface where they gradually undergo hydrolysis. When the constitutive chemical elements of these silicate minerals pass from the crystal state to that of ions in water, the relative affinities among the elements change, some of them moving away from each other, others becoming attracted towards each other. This concept of “convergence and divergence of elements” was precious to Millot (1964), who considered it to be one of the keys to understanding the organization and evolution of the geologic materials at the surface of the earth. Some elements in solution have a mainly inorganic geochemical behavior and are quickly incorporated into clay minerals. Other elements are involved preferentially in biological activity and are associated with organisms and organic matter before becoming constituents of authigenic minerals in sediments. Apatite is one of these authigenic minerals which, because of its relatively low solubility, is commonly preserved in its primary state. As a consequence, it has a far greater potential to reflect the original geochemical characteristics of its sedimentary environment than common biogenic minerals such as carbonates and sulfates.


Organic Matter Clay Mineral Black Shale Phosphate Mineral Apatite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baturin GN (1982) Phosphorites on the sea floor. Origin, composition and distribution. Developments in Sedimentology, vol 33.Elsevier, Amsterdam,343 pp.Google Scholar
  2. Belayouni H (1983) Etude de la matière organique dans la série phosphatée du bassin de Gafsa-Met-laoui (Tunisie)iapplication à la comprehension des mécanismes de la phosphatogenèse.Thèse, Univ Orléans, 202 pp.Google Scholar
  3. Belayouni H, Trichet J (1979) Glucosamine as a biochemical marker for dinoflagellates in phos-phatised sediments. Adv Org Geochem Phys Chem Earth 12:205–210.Google Scholar
  4. Benalioulhaj N (1991) Les formations à phosphates et à schistes bitumineux du bassin des Oulad-Abdoun et du Bassin de Timahdit (Maroc): pétrographie, mineralogie, géochimie et environnement de dépôt. Thèse, Univ Strasbourg, 238 pp.Google Scholar
  5. Benalioulhaj S (1989) Géochimie organique comparée des séries du bassin phosphaté des Oulad-Abdoun et du bassin de schistes bitumineux de Timahdit (Maroc) Implications dans la phos-phatogenèse. Thèse, Univ Orléans, 257 pp.Google Scholar
  6. Cook PJ (1970) Repeated diagenetic calcitisation, phosphatisation and silicification in the Phos-phoria Formation. Geol Soc Am Bull 81:2107–2116.CrossRefGoogle Scholar
  7. Cook PJ, MacElhinny (1979) A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ Geol 74:315–330.CrossRefGoogle Scholar
  8. Daumas RA (1976) Modifications des constituants organiques dans la couche superficielle des sédiments marins: minéralisation et diagenèse. Bull Centre Rech Pau 10:149–158.Google Scholar
  9. EshetY, Almogi-Labin A, Bein A (1994) Dinoflagellate cysts, paleoproductivity and upwelling systems: a late Cretaceous example from Israel. Marine Micropal 23:231–240.CrossRefGoogle Scholar
  10. Flicoteaux R, Lucas J (1984) Weathering of phosphate minerals. In: Nriagu JO, Moore PM (eds) Phosphate minerals.Springer, Berlin Heidelberg New York, pp 292–317.Google Scholar
  11. Föllmi KB, Garrison RE (1991) Phosphatic sediments, ordinary or extraordinary deposits? The example of the Miocene Monterey Formation (California). In: Müller D, Mackenzie JA, Weissert H (eds) Controversies in modern geology. Academic Press, London, pp 55–89.Google Scholar
  12. Gulbrandsen RA, Roberson CE, Neil ST (1984) Time and the crystallization of apatite in seawater. Geochim Cosmochim Acta 48:213–218.CrossRefGoogle Scholar
  13. Hirschler A (1990) Etude de Intervention des microorganismes dans la formation de l’apatite. Thèse, Univ Strasbourg, 142 pp.Google Scholar
  14. Hirschler A, Lucas J, Hubert JC (1990) Bacterial involvement in apatite genesis. FEMS Microbiol Ecol 73:211–220.CrossRefGoogle Scholar
  15. Huc AY (1978) Géochimie organique des schistes bitumineux duToarcien du Bassin de Paris. Thèse, UnivStrasbourg, 138pp.Google Scholar
  16. Jarvis I (1992) Sedimentology, geochemistry and origin of phosphatic chalksithe upper Cretaceous deposits of NW Europe. Sedimentology 39:55–97.CrossRefGoogle Scholar
  17. Lamboy M (1987) Genèse de grains de phosphate à partir de debris de squelette d’échinodermes: les processus et leur signification. Bull Soc Géol Fr 111:759–768.Google Scholar
  18. Lehr JR, McClellan GH, Smith JR, Frazier AW (1968) Characterization of apatites in commercial phosphate rocks. Coll Int Phosphates Minéraux Solides, Toulouse, 1967, vol 2. Masson, Paris, pp 29–44.Google Scholar
  19. Lucas J, Abbas M (1989) Uranium in natural phosphorites: the Syrian example. Sci Géol Bull (Strasb) 42:223–236.Google Scholar
  20. Lucas J, Prévôt L (1984) Synthese de l’apatite par voie bactérienne à partir de matière organique phosphatée et de divers carbonates de calcium dans les eaux douce et marine naturelles. Chem Geol 42:101–118.CrossRefGoogle Scholar
  21. Lucas J, Prévôt L (1985) The synthesis of apatite by bacterial activity: mechanism. Sci Géol Mém (Strasb) 77:83–92.Google Scholar
  22. Lucas J, El Faleh EM, Prévôt L (1990) Experimental study of the substitution of Ca by Sr and Ba in synthetic apatites In: Notholt AJG, Jarvis I (eds) Phosphorite research and development. Geol Soc (Spec Pubi), Lond 52:33–47.Google Scholar
  23. Lucas J, Prévôt L, El Mountassir M (1979) Les phosphorites rubéfiées de Sidi Daoui. Transformation météorique locale du gisement de phosphate des Ouled Abdoun (Maroc). Sci Géol Bull (Strasb) 32:21–37.Google Scholar
  24. Meunier-Christmann C Lucas J, Albrecht P (1989) Organic geochemistry of Moroccan phosphorites and bituminous shales. A contribution to the problem of phosphogenesis. Sci Géol Bull (Strasb) 42:205–222.Google Scholar
  25. Millot G (1964) Géologie des argiles. Masson, Paris, 499 pp (English translation in 1970, Geology of clays.Springer, Berlin Heidelberg New York, 425 pp).Google Scholar
  26. Nathan Y, Lucas J (1976) Experiences sur la precipitation directe de l’apatite dans l’eau de menimplication dans la genèse des phosphorites. Chem Geol 18:181–186.CrossRefGoogle Scholar
  27. Nriagu JO (1984) Phosphate minerals: their properties and general modes of occurrence. In: Nriagu JO, Moore PM (eds) Phosphate minerals.Springer, Berlin Heidelberg New York, pp 292–317.Google Scholar
  28. Parsons TR, Takahashi M, Hargrave B (1977) Biological oceanographic processes. Pergamon, New York, 332 pp.Google Scholar
  29. Prévôt L (1988) Géochimie et pétrographie de la formation à phosphates des Ganntour (Maroc). Utilisation pour une explication de la genèse des phosphorites Crétacé-Eocène. Thèse, Univ Strasbourg, 325 pp.Google Scholar
  30. Prévôt L (1990) Geochemistry, petrography, genesis of Cretaceous-Eocene phosphorites;the Ganntour deposit (Morocco): a type example. Mém Soc Géol Fr 158:230 pp.Google Scholar
  31. Prévôt L, El Faleh M, Lucas J (1989) Details on synthetic apatites formed through bacterial mediation. Mineralogy and chemistry of the products. Sci Géol Bull (Strasb) 42:237–254.Google Scholar
  32. Slansky M (1980) Geologie des phosphates sédimentaires. Mém BRGM114:90.Google Scholar
  33. Soncini MJ (1990) Palynologie des phosphates des Oulad Abdoun (Maroc). Biostratigraphie et environnement de la phosphatogenèse dans le cadre de la crise Crétacé-Te rtiaire.Thése, Univ Strasbourg, 243 pp.Google Scholar
  34. Soncini MJ, Rauscher R (1988) Associations de dinokystes du Maastrichtien-Paléocène phosphate au Maroc. Bull Centres Rech Explor Prod Elf-Aquitaine 12:427–450.Google Scholar
  35. Soudry D, ChampetierY (1983) Microbial processes in the Negev phosphorites (southern lsrael). Sedimentology 30:411–423.CrossRefGoogle Scholar
  36. Soudry D, Lewy Z (1988) Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, southern Israel). Palaeogeogr Palaeoclimat Palaeoecol 64:15–34.CrossRefGoogle Scholar
  37. Van Cappellen P (1991) The formation of marine apatite, a kinetic study. PhD, Yale Univ, New Haven, 240 pp.Google Scholar
  38. Van Cappellen P, Berner RA (1991) Fluorapatite crystal growth from modified seawater solutions. Geochim Cosmochim Acta 55:1219–1234.CrossRefGoogle Scholar
  39. Westbroeck P (1991) Global Emiliana modelling initiative (GEM). Int Worksh on a coccolithophore and global climate.Terra Nova 3:572–574.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

There are no affiliations available

Personalised recommendations