Skip to main content

Abstract

The ray optical technique, comprising of geometrical optics and its extensions, provides simple and physical approaches to the description of the diffraction of an electromagnetic wave by an object. The technique relies upon a number of principles, which, though they may not be rigorous from a mathematical point of view, nonetheless provide approximate solutions to problems that would otherwise be intractable by using analytical or numerically rigorous techniques. In this chapter, we begin by enunciating the principles of ray optics and show how they enable us to extract the essential characteristics of various scattering phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. C. Albertsen and P. L. Christiansen, “Hybrid diffraction coefficients for first and second order discontinuities of two–dimensional scatterers,” SIAM J. Appl. Math, 34, 398–414, 1978.

    Article  MathSciNet  ADS  Google Scholar 

  2. J. M. Bernard, “Diffraction by a metallic wedge covered with a dielectric material,”J. Wave Motion, 9, 543–561, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. M. Bernard, “On the diffraction of a an electromagnetic skew incident field by a non perfectly conducting wedge,” Annates Telecomm., 45(1–2), 30–39, (Erratum 9–10, p.577), 1990.

    Google Scholar 

  4. O. M. Bucci and G. Franceschetti, “Electromagnetic scattering by an half plane with two face impedances,” Radio Sci., 11(1), 49–59, Jan. 1976.

    Article  ADS  Google Scholar 

  5. D. Bouche, “GTD et reciprocite,” Annates des Telecomm, 7–8, 382–387, 1991.

    Google Scholar 

  6. J. J. Bowman, T. B. A. Senior, and P.L. Uslenghi, “Acoustic and electromagnetic scattering by simple shapes,” Hemisphere, 1987.

    Google Scholar 

  7. O. Buyakdura, “Radiation from sources near the edge of a perfectly conducting wedge,” Thèse P.H.D., Université de l’Ohio, 1984.

    Google Scholar 

  8. G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE, 60, 1022–1035, 1972.

    Article  Google Scholar 

  9. L. B. Felsen, “Backscattering from wide–angle and narrow angle cones,” J. Appl. Physics, 26, 138–151, 1955.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. L. B. Felsen, “Plane wave scattering by small angle cones,” IRE Trans. Ant. Prop. 5, 121–129, 1957.

    Article  ADS  Google Scholar 

  11. W. Franz and K. Klante, “Diffraction by surfaces of variable curvature,” IRE Trans. Ant. Prop., AP-7, S68–S70, Dec. 1959.

    Google Scholar 

  12. B. Friedman, Principles of Applied Mathematics, Dover.

    Google Scholar 

  13. Gorianov, “An asymptotic solution of the diffraction of a plane electromagnetic wave by a conducting cylinder,” Radio Eng. Elec. Phys. 3(5), 23–39, 1958.

    Google Scholar 

  14. T. B. Hansen, “Diffraction of electromagnetic waves by corners on perfect conductors,” Ph. D. Dissertation, The Technical University of Denmark, April 1991.

    Google Scholar 

  15. T. B. Hansen, “Corner diffraction coefficients for the quarter plane,” IEEE Trans. Ant. Prop., AP-39, 976–984, July 1991.

    Google Scholar 

  16. K. C. Hill, “A UTD solution to the scattering by a vertex of a perfectly conducting plane angular sector,” Ph.D Dissertation, Ohio State University, 1990.

    Google Scholar 

  17. S. Hong, “Asymptotic theory of electromagnetic and acoustic diffraction by smooth convex surfaces of variable curvature,” J. Math. Phys., 8(6), 1223–1232, 1967.

    Article  ADS  Google Scholar 

  18. L. P. Ivrissimtzis and R. J. Marhefka, “A uniform ray approximation of the scattering by polyhedral structures including high order terms,” IEEE Trans. Ant. Prop., AP-10, 1150–1160, Nov. 1992.

    Google Scholar 

  19. V. I. Ivanov, “Diffraction of short plane electromagnetic waves with oblique incidence on a smooth convex cylinder,” Radiotechnika et Electronika, 5(3), 524–528, 1960.

    Google Scholar 

  20. G. L.James, Geometrical Theory of Diffraction for Electromagnetic Waves, 3rd Ed., Peter Peregrinus, London, 1986.

    Google Scholar 

  21. J. B. Keller, “A geometrical theory of diffraction,” in Calculus of Variations and its Applications, Mc Graw Hill, New York, 1958.

    Google Scholar 

  22. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Amer., 52, 116–130, 1962.

    ADS  Google Scholar 

  23. J. B. Keller and D. S. Ahluwalia, “Diffraction by a curved wire,” SIAM J. Appl. Math., 20(3), 390–405, 1971.

    Article  Google Scholar 

  24. L. Kaminetzky and J. B. Keller, “Diffraction coefficients for higher order edges and vertices,”SIAM J. Appl. Math., 22(1), 109–134, Jan. 1972.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. B. Keller and B. R. Levy, “Decay exponents and diffraction coefficients for surface waves on surfaces of nonconstant curvature,” IRE Trans. Ant. Prop., AP-7, S52–S61, Dec. 1959

    Google Scholar 

  26. G. D. Maliuzhinets, “Excitation, reflection and emission of surface waves from a wedge with given face impedances,” Sov. Phys. Dokl. 3, 752, 1958.

    ADS  Google Scholar 

  27. A. Michaeli, “Elimination of infinities in equivalent edge currents,” IEEE Trans. Ant. Prop., AP-34, 912–918, July 1986 and 1034–1037, Aug. 1986.

    Google Scholar 

  28. F. Molinet, “Geometrical theory of diffraction,” IEEE APS Newsletter, part I, 6–17, Aug. 87; part II, 5–16, Oct. 1987.

    Google Scholar 

  29. P. H. Pathak, “Techniques for high frequency problems,” in Antenna Handbook, Theory, Application and Design, Y. T. Lo and S. W. Lee, Eds., Van Nostrand Rheinhold, 1988.

    Google Scholar 

  30. T. Shamansky, A. Dominek, and L. Peters, “Electromagnetic scattering by a straight thin wire,” IEEE Trans. Ant. Prop. AP-37, 1019–1025, 1989.

    Google Scholar 

  31. T. B. A. Senior, “Diffraction by an imperfectly conducting half–plane at oblique incidence,” Appl. Sci. Res, Sec B(8), 45–61, 1960.

    Google Scholar 

  32. T. B. A Senior, “The diffraction matrix for a discontinuity in curvature,” IEEE Trans Ant Prop., AP-20, 326–333, 1972.

    Google Scholar 

  33. T. B. A. Senior, “Solution of a class of imperfectly wedge problems for skew incidence,” Radio Sci., 21(2), 185–191, March–April 1986.

    Google Scholar 

  34. V. P. Shmyshlaev, “Diffraction of waves by conical surfaces at high frequencies,” Wave Motion 12, 329–339, 1992.

    Article  Google Scholar 

  35. J. A. Stratton, Electromagnetic Theory, New York, McGraw Hill, 1941, p. 527.

    MATH  Google Scholar 

  36. D. J. Struik, Lectures on Classical Differential Geometry, Dover, 1986.

    Google Scholar 

  37. T. B. A. Senior and J. Volakis, “Scattering by an impedance right–angled wedge,” IEEE Ant Prop., AP-34, 681–689, May 1986.

    Google Scholar 

  38. “An approximate skew incidence diffraction coefficient for an impedance wedge”, Electromagnetics, vol 12, n* 1, 33–55, 1992

    Google Scholar 

  39. K. D Trott., P. H. Pathak, and F. A. Molinet, “A UTD type analysis of a plane wave scattering by a fully illuminated perfectly conducting cone,” IEEE Trans. Ant. Prop., AP-38(8), 1150–1160, Aug. 1990.

    Google Scholar 

  40. P. Y. Ufimtsev, “Diffraction of plane electromagnetic waves by a thin cylindrical conductor,” Radio Eng. Elec. Phys., 7, 241–249, 1962.

    Google Scholar 

  41. V. G. Vaccaro, “The generalized reflection method in electromagnetism,” AEU Band 34, Heft 12, 493–500, 1980.

    Google Scholar 

  42. D. R. Voltmer, “Diffraction by doubly curved convex surfaces,” Ph.D. dissertation, Ohio State University, 1970.

    Google Scholar 

  43. J. Volakis and T. B. A. Senior, “A simple expression for a function occurring in diffraction theory,” IEEE-AP, 33(11), 678–680.

    Google Scholar 

  44. V. H. Weston, “The effect of a discontinuity in curvature in high frequency scattering,” IRE Trans.Ant. Prop., AP-10, 775–780, Nov. 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bouche, D., Molinet, F., Mittra, R. (1997). Ray Optics. In: Asymptotic Methods in Electromagnetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60517-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60517-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64440-5

  • Online ISBN: 978-3-642-60517-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics