Skip to main content

Physics and Instrumentation of Doppler Ultrasound

  • Chapter
Diagnostics of Vascular Diseases

Abstract

Imaging of soft tissue is performed using B-scan ultrasound in which the ultrasound echo amplitude is measured and displayed. Information about blood flow is acquired by measurement of the Doppler shift of the transmitted ultrasound after it is scattered by moving blood. The essential quantities of interest in Doppler ultrasound are shown in Fig. 1. Blood of velocity v flows in a vessel. Ultrasound is transmitted with frequency F, and the angle between the ultrasound beam and the direction of motion of the blood flow is θ. Ultrasound is scattered in all directions from the moving blood. The ultrasound backscattered towards the transducer is received. This now has a frequency of FF. The frequency shift is the Doppler shift. The Doppler effet is a general effect which occurs when there is relative motion between a source of waves and an observer. The most common situation in which the Doppler effect is present is in the change in tone which is heard as an ambulance or police car passes by.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson SL, Morrow RJ, Langille BL et al. (1989) Site dependent effect of increases in placental vascular resist-ance on the umbilical arterial velocity waveform in fetal sheep. Ultrasound Med Biol 16: 19–27.

    Article  Google Scholar 

  2. Bluth EI, Stavros AT, Marich KW et al. (1988) Carotid duplex sonography: a multicenter recommendation for standardised imaging and Doppler criteria. Radiographics 8: 487–506.

    PubMed  CAS  Google Scholar 

  3. Bonnefous O, Pesque P (1986) Time domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation. Ultrasonic Imaging 8: 73–85.

    Article  PubMed  CAS  Google Scholar 

  4. Censor D, Newhouse VL, Vantz T, Ortega HV (1988) Theory of ultrasound Doppler-spectra velocimetry for arbitrary beam and flow configuration. IEEE Trans Biomed Eng 35: 740–751.

    Article  PubMed  CAS  Google Scholar 

  5. Cobbold RSC, Veltink PH, Johnston KW (1983) Influence of beam profile and degree of insonation on the CW Doppler ultrasound spectrum and mean velocity. IEEE Trans Son Ultrason 30: 364–370.

    Google Scholar 

  6. David JY, Jones S, Giddens D (1991) Modern spectral analysis techniques for blood velocity and spectral measurements with pulsed Doppler ultrasound. IEEE Trans Biomed Eng 38: 589–596.

    Article  PubMed  CAS  Google Scholar 

  7. Evans DH (1982) Some aspects of the relationship be-tween instantaneous volumetric blood flow and continuous wave Doppler ultrasound recordings. I. The effect of ultrasonic beam width on the output of maximum frequency, mean frequency and RMS processors. Ultrasound Med Biol 8: 605–609.

    Article  PubMed  CAS  Google Scholar 

  8. Evans DH, McDicken WN, Skidmore R, Woodcock JP (1989) Doppler ultrasound: physics, instrumentation and clinical applications. Wiley, Chichester.

    Google Scholar 

  9. Fox MD, Gardiner WM (1988) Three-dimensional Doppler velocimetry of flow jets. IEEE Trans Biomed Eng 35: 834–841.

    Article  PubMed  CAS  Google Scholar 

  10. Gosling RC, King DH (1974) Continuos wave ultra-sound as an alternative and complement to X-rays. In: Reneman RS (ed) Cardiovascular applications of ultra-sound. North Holland, Amsterdam, pp 266–282.

    Google Scholar 

  11. Guo Z, Durand LG, Lee HC (1994) Comparison of time- frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery. IEEE Trans Biomed Eng 41: 332–342.

    Article  PubMed  CAS  Google Scholar 

  12. Hoskins PR (1990) Measurement of arterial blood flow by Doppler ultrasound. Clin Phys Physiol Meas 11: 1–26.

    Article  PubMed  CAS  Google Scholar 

  13. Hoskins PR (1996) Measurement of maximum velocity using duplex ultrasound systems. Br J Radiol 69: 172–177.

    Article  PubMed  CAS  Google Scholar 

  14. Hoskins PR, Loupas T, McDicken WN (1991) A comparison of three difficult filters for speckle reduction of Doppler spectra. Ultrasound Med Biol 16: 375–389.

    Article  Google Scholar 

  15. Kasai C, Namekawa K, Koyano A, Omoto R (1985) Realtime two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans Son Ultrason 32: 458–464.

    Google Scholar 

  16. Kenton AR, Martin PJ, Evans DH (1996) Power Doppler: an advance over colour Doppler for transcranial imaging. Ultrasound Med Biol 22: 313–317.

    Article  PubMed  CAS  Google Scholar 

  17. McDicken WN, Sutherland GR, Moran CM, Gordon LN (1992) Colour Doppler imaging of the myocardium. Ultrasound Med Biol 18: 651–654.

    Article  PubMed  CAS  Google Scholar 

  18. McPherson DS, Evans DH, Bell PRF (1984) Common femoral artery Doppler waveforms: a comparison of three methods of objective analysis with direct pressure measurements. Br J Surg 71: 46–49.

    Article  Google Scholar 

  19. Newhouse VL, Furgason ES, Johnson GF, Wolf DA (1980) The dependence of ultrasound Doppler band-width on beam geometry. IEEE Trans Son Ultrason 27: 50–59.

    Google Scholar 

  20. Overbeck JR, Beach KW, Strandness DE (1992) Vector Doppler: accurate measurements of blood velocity in two dimensions. Ultrasound Med Biol 18: 19–31.

    Article  PubMed  CAS  Google Scholar 

  21. Pourcelot L (1974) Applications cliniques de l’examen Doppler transcutane. In: Peronneau (ed) Velocimetrie ultrasonore Doppler. Seminaire INSERM, Paris, pp 213–240.

    Google Scholar 

  22. Robinson ML, Sacks D, Perlmutter GS, Marinelli DL (1988) Diagnostic criteria for carotid duplex sono-graphy. Am J Roentgenol 151: 1045–1049.

    CAS  Google Scholar 

  23. Rubin JM, Bude RO, Carson PL et al. (1994) Power Doppler US: a potentially useful alternative to mean-frequency based color Doppler US. Radiology 190: 853–856.

    PubMed  CAS  Google Scholar 

  24. Schlindwein FS, Evans DH (1989) A real time autoregressive spectrum analyser for Doppler signals. Ultra-sound Med Biol 15: 263–272.

    Article  CAS  Google Scholar 

  25. Skidmore R, Woodcock JP (1980) Physiological inter-pretation of Doppler shift waveforms. I. Theoretical considerations. Ultrasound Med Biol 6: 7–10.

    Article  CAS  Google Scholar 

  26. Thomson RS, Stevens RJ (1989) Mathematical model for interpretation of Doppler velocity waveform indices. Med Biol Eng Comput 27: 269–276.

    Article  Google Scholar 

  27. Thrush AJ, Evans DH (1995) Intrinsic spectral broadening: a potential cause of misdiagnosis of carotid artery disease. J. Vase Invest 1: 187–192.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoskins, P.R., McDicken, W.N. (1997). Physics and Instrumentation of Doppler Ultrasound. In: Lanzer, P., Lipton, M. (eds) Diagnostics of Vascular Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60512-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60512-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64437-5

  • Online ISBN: 978-3-642-60512-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics