Skip to main content

Role of DNA Excision Repair Gene Defects in the Etiology of Cancer

  • Chapter
Genetic Instability and Tumorigenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 221))

Abstract

Experimental and clinical evidence strongly suggests that exposure to environmental carcinogens is a critical event in the development of the majority of human cancers. Mutations in genes important for normal cellular functions and growth properties, including many proto-oncogenes and tumor suppressor genes, may result from spontaneous or environmentally induced alterations in DNA and contribute directly to the multistage process leading to malignancy. In addition, alterations in the specific genes required for processing and responding to DNA damage may result in an enhanced rate of accumulation of additional mutations, recombinational events, chromosomal abnormalities, and gene amplification (Loeb 1991). Therefore, the removal of lesions from DNA is essential not only for the basic processes of transcription and replication necessary for cellular survival, but also for maintaining genomic stability and avoiding the development of malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40: 359–369

    Article  PubMed  CAS  Google Scholar 

  • Bootsma D, Hoeijmakers JHJ (1993) Engagement with transcription. Nature 363: 114–115

    Article  PubMed  CAS  Google Scholar 

  • Boyce R, Howard-Flanders P (1964) Release of UV light-induced thymidine dimers from DNA in E. coli. Proc Natl Acad Sci USA 51: 293–300

    Article  CAS  Google Scholar 

  • Brash DE (1988) UV mutagenic photoproducts in E. coli and human cells: a molecular genetics perspective on human skin cancer. Photochem Photobiol 48: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88: 10124–10128

    Article  PubMed  CAS  Google Scholar 

  • Bredberg A, Kraemer KH, Seidman MM (1986) Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells. Proc Natl Acad Sci USA 83: 8273–8277

    Article  PubMed  CAS  Google Scholar 

  • Bronner CE, Baker SM, Morrison PT, Watten B, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Kindblom A, Tannergard P, Bollag RJ, Godwin AR, Ward DC, Nordenskjold M, Fishel R, Kolodner R, Liskay RM (1994) Mutations in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368: 258–261

    Article  PubMed  CAS  Google Scholar 

  • Cairns J (1981) The origin of human cancers. Nature 289: 353–357

    Article  PubMed  CAS  Google Scholar 

  • Chen RH, Maher VM, Brouwer J, Van de Putte P, McCormick JJ (1992) Preferential repair and strand-specific repair of benzo[a]pyrene diol epoxide adducts in the HPRT gene of diploid human fibroblasts. Proc Natl Acad Sci USA 89: 5413–5417

    Article  PubMed  CAS  Google Scholar 

  • Christians FC, Hanawalt PC (1992) Inhibition of transcription and strand-specific DNA repair by α-amanatin in Chinese hamster ovary cells. Mutat Res 274: 93–101

    PubMed  CAS  Google Scholar 

  • Christians FC, Hanawalt PC (1993) Lack of transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry 32: 10512–10518

    Article  PubMed  CAS  Google Scholar 

  • Christians FC, Hanawalt PC (1994) Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne’s syndrome cells. Mutat Res 323: 179–187

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218: 652–656

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE, Kraemer KH (1989) Xeroderma pigmentosum. In: Scriver CR, Beudet AL, Sly WS, Valle D (eds.) Metabolic basis of inherited disease. McGraw-Hill, New York, pp 2949–2971

    Google Scholar 

  • Donahue BA, Yin S, Taylor JS, Reines D, Hanawalt PC (1994) Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc Natl Acad Sci USA 91: 8502–8506

    Article  PubMed  CAS  Google Scholar 

  • Drapkin R, Reardon JT, Ansari A, Huang JC, Zawel L, Ahn K, Sancar A, Reinberg D (1994) Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368: 769–772

    Article  PubMed  CAS  Google Scholar 

  • Dumaz N, Drougard C, Sarasin A, Daya-Grosjean L (1993) Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc Natl Acad Sci USA 90: 10529–10533

    Article  PubMed  CAS  Google Scholar 

  • Dumaz N, Stary A, Soussi T, Daya-Grosjean L, Sarasin A (1994) Can we predict solar ultraviolet radiation as the causal event in human tumours by analysing the mutation spectra of the p53 gene? Mutat Res 307: 375–386

    PubMed  CAS  Google Scholar 

  • Evans MK, Robbins JH, Ganges MB, Tarone RE, Nairn RS, Bohr VA (1993a) Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. J Biol Chem 268: 4839–4847

    PubMed  CAS  Google Scholar 

  • Evans MK, Taffe BG, Harris CC, Bohr VA (1993b) DNA strand bias in the repair of the p53 gene in normal and xeroderma pigmentosum group C fibroblasts. Cancer Res 53: 5377–5381

    PubMed  CAS  Google Scholar 

  • Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Ford JM, Lommel L, Hanawalt PC (1994) Preferential repair of ultraviolet light-induced DNA damage in the transcribed strand of the human p53 gene. Mol Carcinogen 10: 105–109

    Article  CAS  Google Scholar 

  • Friedberg EC (1985) DNA repair. Freeman, New York

    Google Scholar 

  • Friedberg EC, Bardwell AJ, Bardwell L, Wang Z, Dianov G (1994) Transcription and nucleotide excision repair — reflections, considerations and recent biochemical insights. Mutat Res 307: 5–14

    PubMed  CAS  Google Scholar 

  • Hanawalt PC (1993) Transcription-dependent and transcription-coupled DNA repair responses. In: Bohr AV, Wassermann K, Kraemer KH (eds) Proceedings of the Alfred Benzon symposium 5: DNA repair mechanisms. Munksgaard, Copenhagen, pp 231–242

    Google Scholar 

  • Hanawalt P, Mellon I (1993) Stranded in an active gene. Curr Biol 3: 67–69

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt PC, Sarasin A (1986) Cancer-prone hereditary diseases with DNA processing abnormalities. Trends Genet 2: 188–192

    Article  Google Scholar 

  • Hanawalt PC, Donahue BA, Sweder KS (1994) DNA repair and transcription: collision or collusion? Curr Biol 4: 518–521

    Article  PubMed  CAS  Google Scholar 

  • Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, Schultz RA, Stefanini M, Lehmann AR, Mayne LV, Friedberg EC (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82: 555–564

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JHJ (1993a) Nucleotide excision repair, I. From E. coli to yeast. Trends Genet 9: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JHJ (1993b) Nucleotide excision repair, II. From yeast to mammals. Trends Genet 9: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidranksky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253: 49–53

    Article  PubMed  CAS  Google Scholar 

  • Kanjilal S, Pierceall WE, Cummings KK, Kripke ML, Ananthaswamy HN (1993) High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: evidence for strand bias and tumor heterogeneity. Cancer Res 53: 2961–2964

    PubMed  CAS  Google Scholar 

  • Kantor GJ, Barsalou LS, Hanawalt PC (1990) Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum complementation group C. Mutat Res 235: 171–180

    PubMed  CAS  Google Scholar 

  • Kraemer KH, Slor H (1985) Xeroderma pigmentosum. Clin Dermatol 3: 33–69

    Article  PubMed  CAS  Google Scholar 

  • Kraemer KH, Lee MM, Scotto J (1984) DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 5: 511–514

    Article  PubMed  CAS  Google Scholar 

  • Kress S, Sutter C, Strickland PT, Makhtar H, Schweizer J, Schwarz M (1992) Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 52: 6400–6403

    PubMed  CAS  Google Scholar 

  • Leach FS, Nicolaides NC, Popadopoulos N, Liu B, Hen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M, Guan WY, Zhang J, Meltzer PS, Yu JW, Kao FT, Chen D, Cerosaletti KM, Fouraier REK, Todd S, Lewis T, Leach RJ, Naylor SL, Weissenbach J, Mecklin JP, Jarvinen H, Petersen GM, Hamilton SR, Green J, Jass J, Watson P, Lynch HT, Trent JM, de la Chappelle A, Kinzler KW, Vogelstein B (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Leadon SA, Lawrence DA (1991) Preferential repair of DNA damage on the transcribed strand of the human metallothionein genes requires RNA polymerase II. Mutat Res 255: 67–78

    PubMed  CAS  Google Scholar 

  • Leadon SA, Lawrence DA (1992) Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem 267: 23175–23182

    PubMed  CAS  Google Scholar 

  • Ljungman M, Zhang F (1996) Blocked RNA polymerase as a trigger for UV light-induced apoptosis. Oncogene (in press).

    Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51: 3075–3079

    PubMed  CAS  Google Scholar 

  • Lommel L, Hanawalt PC (1993) Increased UV resistance of a xeroderma pigmentosum revertant cell line is correlated with selective repair of the transcribed strand of an expressed gene. Mol Cell Biol 13: 970–976

    PubMed  CAS  Google Scholar 

  • Ma L, Westbroek A, Jockemsen AG, Weeda G, Bosch A, Bootsma D, Hoeijmakers JHJ, van der Eb AJ (1994) Mutational analysis of ERCC3, which is involved in DNA repair and transcription initiation: identification of domains essential for the DNA repair function. Mol Cell Biol 14: 4126–4134

    PubMed  CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff JZ, Tainsky MA, Friend SH (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250: 1233–1238

    Article  PubMed  CAS  Google Scholar 

  • Mansbridge JN, Hanawalt PC (1983) Domain-limited repair of DNA in ultraviolet irradiated fibroblasts from xeroderma pigmentosum complementation group C. In: Friedberg EC, Bridges BA (eds) Cellular responses to DNA damage. Liss, New York, pp 195–207

    Google Scholar 

  • Mayne LV, Lehmann AR (1982) Failure of RNA synthesis to recover after UV-irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res 42: 1473–1478

    PubMed  CAS  Google Scholar 

  • Mayne LV, Lehmann AR, Waters R (1982) Excision repair in Cockayne syndrome. Mutat Res 106: 179–189

    PubMed  CAS  Google Scholar 

  • McGregor WG, Chen RH, Lukash L, Maher VM, McCormick JJ (1991) Cell cycle-dependent strand bias for UV-induced mutations in the transcribed strand of excision repair-proficient human fibroblasts but not in repair-deficient cells. Mol Cell Biol 11: 1927–1934

    PubMed  CAS  Google Scholar 

  • Mellon I, Hanawalt PC (1989) Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Mellon I, Bohr VA, Smith CA, Hanawalt PC (1986) Preferential DNA repair of an active gene in human cells. Proc Natl Acad Sci USA 83: 8878–8882

    Article  PubMed  CAS  Google Scholar 

  • Mellon I, Spivak G, Hanawalt PC (1987) Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51: 241–249

    Article  PubMed  CAS  Google Scholar 

  • Miller CW, Simon K, Aslo A, Kok K, Yokota J, Buys CHCM, Terada M, Koeffler HP (1992) p53 mutations in human lung tumors. Cancer Res 52: 1695–1698

    PubMed  CAS  Google Scholar 

  • Moles JP, Moyret C, Guillot B, Jeanteur P, Guilhou JJ, Theillet C, Basset-Seguin N (1993) p53 gene mutations in human epithelial skin cancers. Oncogene 8: 583–588

    PubMed  CAS  Google Scholar 

  • Mullenders LHF, Vrieling H, Venema J, van Zeeland AA (1991) Hierarchies of DNA repair in mammalian cells: biological consequences. Mutat Res 250: 223–228

    PubMed  CAS  Google Scholar 

  • Muriel WJ, Lamb JR, Lehmann AR (1991) UV mutation spectra in cell lines from patients with Cockayne’s syndrome and ataxia telangiectasia, using the shuttle vector pZ189. Mutat Res 254: 119–123

    PubMed  CAS  Google Scholar 

  • Nakazawa H, English D, Randell PL, Nakazawa K, Martel N, Armstrong BK, Yamasaki H (1994) UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci USA 91: 360–364

    Article  PubMed  CAS  Google Scholar 

  • Nance MA, Berry SA (1992) Cockayne syndrome: review of 140 cases. Am J Med Gen 42: 68–84

    Article  CAS  Google Scholar 

  • Papadopoulos N, Nicolaides NC, Wie YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD, Venter JC, Hamilton SR, Petersen GM, Watson P, Lynch HT, Peltomaki P, Mecklin J, de la Chapelle A, Kinzler KW, Vogelstein B (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629

    Article  PubMed  CAS  Google Scholar 

  • Parris CN, Kraemer KH (1993) Ultraviolet-induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Proc Natl Acad Sci USA 90: 7260–7264

    Article  PubMed  CAS  Google Scholar 

  • Pettijohn D, Hanawalt PC (1964) Evidence for repair-replication of UV damage in bacteria. J Mol Biol 9: 395–402

    Article  PubMed  CAS  Google Scholar 

  • Pierceall WE, Mukhopadhyay T, Goldberg LH, Ananthaswamy HH (1991) Mutations in the p53 tumor suppressor gene in human cutaneous squamous cell carcinomas. Mol Carcinog 4: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Puisieux A, Lim S, Groopman J, Oztuk M (1991) Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res 51: 6185–6189

    PubMed  CAS  Google Scholar 

  • Rady P, Scinicariello F, Wagner RF, Tyring SK (1992) p53 mutations in basal cell carcinomas. Cancer Res 82: 3804–3806

    Google Scholar 

  • Robbins JH (1988) Xeroderma pigmentosum: defective DNA repair causes skin cancer and neurodegeneration. JAMA 260: 384–388

    Article  PubMed  CAS  Google Scholar 

  • Robbins JH, Kraemer KH, Lutzner MA, Festoff BW, Coon HG (1974) Xeroderma pigmentosum: an inherited disease with sun sensitivity, multiple cutaneous neoplasms and abnormal repair. Ann Intern Med 80: 221–228

    PubMed  CAS  Google Scholar 

  • Sancar A, Tang MS (1993) Nucleotide excision repair. Photochem Photobiol 57: 905–921

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Nishigori C, Zghal M, Yagi T, Takebe H (1993) Ultraviolet-specific mutations in p53 skin tumors in xeroderma pigmentosum patients. Cancer Res 53: 2944–2949

    PubMed  CAS  Google Scholar 

  • Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers JHJ, Chambon P, Egly JM (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M, Sarasin A, Weeda G, Hoeijmakers JH, Egly JM (1994) The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J 13: 2388–2392

    PubMed  CAS  Google Scholar 

  • Schmickel RD, Chu EHY, Trosko JE (1977) Cockayne syndrome: a cellular sensitivity to ultraviolet light. Pediatrics 60: 135–139

    PubMed  CAS  Google Scholar 

  • Seetharam S, Protic-Sabljic M, Seidman MM, Kraemer KH (1987) Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum. J Clin Invest 80: 1613–1617

    Article  PubMed  CAS  Google Scholar 

  • Seetharam S, Kraemer KH, Waters HL, Seidman MM (1991) Ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum lymphoblastoid cells and fibroblasts. Mutat Res 254: 97–105

    PubMed  CAS  Google Scholar 

  • Selby CP, Sancar A (1991) Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. Proc Natl Acad Sci USA 88: 8232–8236

    Article  PubMed  CAS  Google Scholar 

  • Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 260: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Selby CP, Witkin EM, Sancar A (1991) Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci USA 88: 11574–11578

    Article  PubMed  CAS  Google Scholar 

  • Setlow RB, Carrier W (1964) The disappearance of thymidine dimers from DNA: an error correcting mechanism. Proc Natl Acad Sci USA 51: 226–231

    Article  PubMed  CAS  Google Scholar 

  • Smerdon MT, Thoma F (1990) Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Sweder KS (1994) Nucleotide excision repair in yeast. Curr Genet 27: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Sweder KS, Hanawalt PC (1992) Preferential repair of cyclobutane pyrimidine dimers in the transcribed DNA strand in yeast chromosomes and plasmids is dependent upon transcription. Proc Natl Acad Sci USA 89: 10696–10700

    Article  PubMed  CAS  Google Scholar 

  • Sweder KS, Hanawalt PC (1993) Transcription-coupled DNA repair. Science 262: 439–440

    Article  PubMed  CAS  Google Scholar 

  • Sweder KS, Hanawalt PC (1994) The COOH terminus of suppressor of stem loop (SSL2/RAD25) in yeast is essential for overall genomic exicision repair and transcription-coupled repair. J Biol Chem 269: 1852–1857

    PubMed  CAS  Google Scholar 

  • Takayama K, Salazar EP, Lehmann A, Stefanini M, Thompson LH, Weber CA (1995) Defects in the DNA repair and transcription gene ERCC2 in the cancer-prone disorder xeroderma pigmentosum group D. Cancer Res 55: 5656–5663

    PubMed  CAS  Google Scholar 

  • Tessman I (1976) A mechanism of UV reactivation. In: Bukhari A, Lungquist E (eds) Abstracts of the bacteriophage meeting. Cold Spring Harbor Laboratory Press, New York, pp 87

    Google Scholar 

  • Timme TL, Moses RE (1988) Review: diseases with DNA damage-processing defects. Am J Med Sci 295: 40–48

    Article  PubMed  CAS  Google Scholar 

  • Troelstra C, Adijk H, de Wit J, Westerweld A, Thompson LH, Bootsma D, Hoeijmakers JHJ (1990) Molecular cloning of the human excision repair gene ERCC6. Mol Cell Biol 10: 5806–5813

    PubMed  CAS  Google Scholar 

  • Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JHJ (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71: 939–953

    Article  PubMed  CAS  Google Scholar 

  • van Hoffen A, Natarajan AT, Mayne LV, van Zeeland AA, Mullenders LHF, Venema J (1993) Deficient repair of the transcribed strand of active genes in Cockayne’s syndrome cells. Nucleic Acids Res 21: 5890–5895

    Article  PubMed  Google Scholar 

  • van Vuuren AJ, Vermeulen W, Ma L, Weeda G, Appeldoorn E, Jaspers NGJ, van der Eb AJ, Bootsma D, Hoeijmakers JHJ, Humbert S, Schaeffer L, Egly JM (1993) Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2. EMBO J 13: 1645–1653

    Google Scholar 

  • Venema J, Mullenders LHF, Natarajan AT, van Zeeland AA, Mayne LV (1990a) The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA 87: 4707–4711

    Article  PubMed  CAS  Google Scholar 

  • Venema J, van Hoffen A, Natarajan AT, van Zeeland AA, Mullenders LHF (1990b) The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res 18: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Venema J, van Hoffen A, Karcagi V, Natarajan AT, van Zeeland AA, Mullenders LHF (1991) Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol Cell Biol 11: 4128–4134

    PubMed  CAS  Google Scholar 

  • Venema J, Barosava Z, Natarajan AT, van Zeeland AA, Mullenders LHF (1992) Transcription affects the rate but not the extent of repair of cyclobutane pyrimidine dimers in the human adenosine deaminase gene. J Biol Chem 267: 8852–8856

    PubMed  CAS  Google Scholar 

  • Vermeulen W, Scott RJ, Rodgers S, Muller HJ, Cole J, Arlett CF, Kleijer WJ, Bootsma D, Hoeijmakers JHJ, Weeda G (1994) Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am J Hum Genet 54: 191–200

    PubMed  CAS  Google Scholar 

  • Vos JMH, Wauthier EL (1991) Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerase-I and polymerase-II. Mol Cell Biol 11: 2245–2252

    PubMed  CAS  Google Scholar 

  • Vrieling H, van Rooijen ML, Groen NA, Zdzienicka MZ, Simons JWIM, Lohman PHM, van Zeeland AA (1989) DNA strand specificity for UV-induced mutations in mammalian cells. Mol Cell Biol 9: 1277–1283

    PubMed  CAS  Google Scholar 

  • Vrieling H, Venema J, van Rooyen ML, van Hoffen A, Menichini P, Zdzienicka MZ, Simons JWIM, Mullenders LHF, van Zeeland AA (1991) Strand specificity for UV-induced DNA repair and mutations in the Chinese hamster HPRT gene. Nucleic Acids Res 19: 2411–2415

    Article  PubMed  CAS  Google Scholar 

  • Wang YC, Maher VM, Mitchell DL, McCormick JJ (1993) Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Mol Cell Biol 13: 4276–4283

    PubMed  CAS  Google Scholar 

  • Weeda G, van Ham RCA, Vermeulen W, Bootsma D, van der Eb AJ, Hoeijmakers JHJ (1990) A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell 62: 777–791

    Article  PubMed  CAS  Google Scholar 

  • Weeda G, Hoeijmakers JHJ, Bootsma D (1993) Genes controlling nucleotide excision repair in eukaryotic cells. Bioessays 15: 249–258

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Tatsumi-Miyajima J, Sata M, Kraemer KH, Takebe H (1991) Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F. Cancer Res 51: 3177–3182

    PubMed  CAS  Google Scholar 

  • Yagi T, Sato M, Tatsumi-Miyajima J, Takebe H (1992) UV-induced base substitution mutations in a shuttle vector plasmid propagated in group C xeroderma pigmentosum cells. Mutat Res 273: 213–220

    PubMed  CAS  Google Scholar 

  • Yamaizumi M, Sugano T (1994) UV induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9: 2775–2784

    PubMed  CAS  Google Scholar 

  • Ziegler A, Leffell DJ, Kunala S, Sharma HW, Gailani M, Simon JA, Halperin AJ, Baden HP, Shapiro PE, Bale AE, Brash DE (1993) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 90: 4216–4220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ford, J.M., Hanawalt, P.C. (1997). Role of DNA Excision Repair Gene Defects in the Etiology of Cancer. In: Kastan, M.B. (eds) Genetic Instability and Tumorigenesis. Current Topics in Microbiology and Immunology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60505-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60505-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64434-4

  • Online ISBN: 978-3-642-60505-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics