Skip to main content

Intercellular Communication and Insulin Secretion

  • Chapter

Abstract

In 1973, a Geneva group reported for the first time that the endocrine cells of the islets of Langerhans are linked by gap junctions and suggested that these membrane structures may be somehow involved in the control of insulin secretion [1]. This work, which has set the basis for most of the later studies I review here, was senior authored by Prof. A.E. Renold. As on several other occasions, he, to whom I was later introduced to as “Uncle Albert,” had timely sensed with L. Orci the potential importance of this novel form of cell-to-cell interaction. Throughout the 11 years I had the chance to see Albert Renold in Geneva, his enthusiasm and warm support of my own work in the field of gap junctional communication never failed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orci L, Unger RH, Renold AE (1973) Structural coupling between pancreatic islet cells. Experientia 29: 1015–1018

    Article  PubMed  CAS  Google Scholar 

  2. LeRoith D (1990) Are all cells “endocrine”? In: Becker KL (ed) Principles and practice of endocrinology and metabolism. Lippincott, Philadelphia, pp 10–13

    Google Scholar 

  3. Bennett MVL, Barrio LC, Bargiello TA, Spray DC, Hertzberg E, Saez JC (1991) Gap junctions: new tools, new answers, new questions. Neuron 6: 305–320

    Article  PubMed  CAS  Google Scholar 

  4. Edelman GM, Crossin KL (1991) Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem 60: 155– 190

    Article  PubMed  CAS  Google Scholar 

  5. Greenwald I, Rubin GM (1992) Making a difference: the role of cell-to-cell interactions in establishing separate identities for equivalent cells. Cell 68: 271–281

    Article  PubMed  CAS  Google Scholar 

  6. Beyer EC, Paul DL, Goodenough DA (1990) Connexin family of gap junction proteins. J Membr Biol 116: 187–194

    Article  PubMed  CAS  Google Scholar 

  7. Samols E, Stagner JI (1991) Intraislet and islet-acinar portal systems and their significance. In: Samols E (ed) The endocrine pancreas. Raven, New York, pp 93–124

    Google Scholar 

  8. Marks V, Samols E, Stagner J (1992) Intra-islet interactions. In: Flatt PR (ed) Nutrient regulation of insulin secretion. Portland, London, pp 41–57

    Google Scholar 

  9. Berggren PO, Rorsman P, Efendic S, Ostenson CG, Flatt PR, Nilsson T, Arkhammar P, Juntti- Berggren L (1992) Mechanisms of action of entero-insular hormones, islet peptides and neural input on the insulin secretory process. In: Flatt PR (ed) Nutrient regulation of insulin secretion. Portland, London, pp 289–318

    Google Scholar 

  10. Meda P (1995) Junctional coupling of pancreatic β-cells. In: Huizinga JD (ed) Pacemaker activity and intercellular communication. CRC, Boca Raton, pp 275–291

    Google Scholar 

  11. Pipeleers D (1984) Islet cell interactions with pancreatic B-cells. Experientia 40: 1114–1126

    Article  PubMed  CAS  Google Scholar 

  12. Chertow BS, Baranetsky NG, Sivitz WI, Meda P, Webb MD, Shih JC (1983) Cellular mechanisms of insulin release. Effects of retinoids on rat islet cell-to-cell adhesion, reaggregation, and insulin release. Diabetes 32: 568–574

    Article  PubMed  CAS  Google Scholar 

  13. Halban PA, Wollheim CB, Blondel B, Meda P, Niesor EN, Mintz DH (1982) The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology 111: 86–94

    Article  PubMed  CAS  Google Scholar 

  14. Maes E, Pipeleers D (1984) Effects of glucose and 3’,5’-cyclic adenosine monophosphate upon reaggregation of single pancreatic B-cells. Endocrinology 114: 2205–2209

    Article  PubMed  CAS  Google Scholar 

  15. Lernmark A (1974) The preparation of, and studies on, free cell suspensions from mouse pancratic islets. Diabetologia 10: 431–438

    Article  PubMed  CAS  Google Scholar 

  16. Pipeleers D, In’t Veld P, Maes E, Van de Winkel M (1982) Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci USA 79: 7322–7325

    Google Scholar 

  17. Salomon D, Meda P (1986) Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells. Exp Cell Res 162: 507–520

    Article  PubMed  CAS  Google Scholar 

  18. Bosco D, Orci L, Meda P (1989) Homologous but not heterologous contact increases the functioning of individual secretory cells. Exp Cell Res 184: 72–80

    Article  PubMed  CAS  Google Scholar 

  19. Stagner JI (1991) Pulsatile secretion from the endocrine pancreas: metabolic, hormonal, and neural modulation. In: Samols E (ed) The endocrine pancreas. Raven, New York, pp 283–302

    Google Scholar 

  20. Bergsten P, Hellman B (1993) Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes 42: 670–674

    Article  PubMed  CAS  Google Scholar 

  21. Kawai K, Ipp E, Orci L, Perrelet A, Unger RH (1982) Circulating somatostatin acts on the islets of Langerhans byway of a somatostatin-poor compartment. Science 218: 477–478

    Article  PubMed  CAS  Google Scholar 

  22. Samols E, Stagner JI, Ewart RBL, Marks V (1988) The order of islet cellular perfusion is B-A-D in the perfused rat pancreas. J Clin Invest 82: 1715–1721

    Article  Google Scholar 

  23. Orci L, Unger RH (1975) Functional subdivision of islets of Langerhans and possible role of D cells. Lancet II: 1243–1244

    Article  Google Scholar 

  24. Hellman B, Gylfe E, Grapengiesser E, Lund P-E, Berts A (1992) Cytoplasmic Ca2+ oscillations in pancreatic β-cells. Biochim Biophys Acta 1113: 295–305

    PubMed  CAS  Google Scholar 

  25. Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage clamp conditions. J Physiol (Lond) 374: 531–550

    CAS  Google Scholar 

  26. Falke LC, Gillis KD, Pressel DM, Misler S (1989) “Perforated patch recording”allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic B cells. FEBS Lett 251: 167–172

    Article  PubMed  CAS  Google Scholar 

  27. Meissner HP (1976) Electrophysiological evidence for coupling between pancreatic B cells of pancreatic islets. Nature 262: 502–504

    Article  PubMed  CAS  Google Scholar 

  28. Eddlestone GT, Goncalves A, Bangham JA, Rojas E (1984) Electrical coupling between cells in islets of Langerhans from mouse. J Membr Biol 77: 1–14

    Article  PubMed  CAS  Google Scholar 

  29. Meda P, Atwater I, Goncalves A, Bangham A, Orci L, Rojas E (1984) The topography of electrical synchrony among B-cells in the mouse islets of Langerhans. Q J Exp Physiol 69: 719–735

    PubMed  CAS  Google Scholar 

  30. Valdeolmillos M, Santos RM, Contreras D, Soria B, Rosario LM (1989) Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of Langerhans. FEBS Lett 259: 19–23

    Article  PubMed  CAS  Google Scholar 

  31. Valdeolmillos M, Nadal A, Soria B, Garcia-Sancho J (1993) Fluorescence digital image analysis of glucose-induced [Ca2+]; oscillations in mouse pancreatic islets of Langerhans. Diabetes 42: 1210–1214

    Article  PubMed  CAS  Google Scholar 

  32. Perez-Armendariz E, Atwater I, Rojas E (1985) Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans. Biophys J 48: 741–749

    Article  PubMed  CAS  Google Scholar 

  33. Kumar NM, Gilula NB (1992) Molecular biology and genetics of gap junction channels. Semin Cell Biol 3: 3–16

    Article  PubMed  CAS  Google Scholar 

  34. Willecke K, Hennemann H, Dahl E, Jungbluth S, Heynkes R (1991) The diversity of connexin genes encoding gap junctional proteins. Eur J Cell Biol 56: 1–7

    PubMed  CAS  Google Scholar 

  35. Meda P, Pepper M, Traub O, Willecke K, Gros D, Beyer E, Nicholson B, Paul D, Orci L (1993) Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology 133: 2371–2378

    Article  PubMed  CAS  Google Scholar 

  36. Meda P, Chanson M, Pepper M, Giordano E, Bosco D, Traub O, Willecke K, EI Aoumari A, Gros D, Beyer E, Orci L, Spray DC (1991) In vivo modulation of connexin 43 gene expression and junctional coupling of pancreatic B-cells. Exp Cell Res 192: 469–480

    Article  PubMed  CAS  Google Scholar 

  37. Meda P, Perrelet A, Orci L (1979) Increase of gap junctions between pancreatic B-cells during stimulation of insulin secretion. J Cell Biol 82: 441–448

    Article  PubMed  CAS  Google Scholar 

  38. Meda P, Denef J-F, Perrelet A, Orci L (1980a) Nonrandom distribution of gap junctions between pancreatic B-cells. Am J Physiol 238: C114–C119

    Google Scholar 

  39. Meda P, Halban P, Perrelet A, Renold AE, Orci L (1980b) Gap junction development is correlated with insulin content in the pancreatic B-cell. Science 209: 1026–1028

    Article  PubMed  CAS  Google Scholar 

  40. Perez-Armendariz M, Roy C, Spray DC, Bennett MVL (1991) Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys J 59: 76–92

    Article  PubMed  CAS  Google Scholar 

  41. Meda P, Amherdt M, Perrelet A, Orci L (1981) Metabolic coupling between cultured pancreatic B-cells. Exp Cell Res 133: 421#x2013;430

    Article  PubMed  CAS  Google Scholar 

  42. Meda P, Kohen E, Kohen C, Rabinovitch A, Orci L (1982) Direct communication of homologous and heterologous endocrine islet cells in culture. J Cell Biol 92: 221–226

    Article  PubMed  CAS  Google Scholar 

  43. Kohen E, Kohen C, Thorell B, Mintz DH, Rabinovitch A (1979) Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study. Science 204: 862–865

    Article  PubMed  CAS  Google Scholar 

  44. Kohen E, Kohen C, Rabinovitch A (1983) Cell-to-cell communication in rat pancreatic islet monolayer cultures is modulated by agents affecting islet cell secretory activity. Diabetes 32: 95–98

    Article  PubMed  CAS  Google Scholar 

  45. Michaels RL, Sheridan JD (1981) Islets of Langerhans: dye coupling among immunocytochemically distinct cell types. Science 214: 801–803

    Article  PubMed  CAS  Google Scholar 

  46. Meda P, Michaels RL, Halban PA, Orci L, Sheridan JD (1983) In vivo modulation of gap junctions and dye coupling between B-cells of the intact pancreatic islet. Diabetes 32: 858–868

    Article  PubMed  CAS  Google Scholar 

  47. Bosco D, Meda P (1992) Actively synthetizing β-cells secrete preferentially during glucose stimulation. Endocrinology 129: 3157–3166

    Article  Google Scholar 

  48. Philippe J, Giordano E, Gjinovci A, Meda P (1992) cAMP prevents the glucocorticoid-mediated inhibition of insulin gene expression in rodent islet cells. J Clin Invest 90: 2228–2233

    Article  PubMed  CAS  Google Scholar 

  49. Meda P, Bosco D, Chanson M, Giordano E, Vallar L, Wollheim C, Orci L (1990a) Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 86: 759–768

    Article  PubMed  CAS  Google Scholar 

  50. Bruzzone R, Meda P (1988) The gap junction: a channel for multiple functions? Eur J Clin Invest 18: 444–453

    Article  PubMed  CAS  Google Scholar 

  51. Vozzi C, Ullrich S, Charollais A, Philippe J, Orci L, Meda P (1995) Adequate connexin expression is required for proper insulin production. J Cell Biol 131: 1561–1572

    Article  PubMed  CAS  Google Scholar 

  52. Bosco D, Meda P, Thorens B, Malaisse WJ (1995) Heterogenous secretion of individual B-cells in response to D-glucose and to non-glucidic nutrient secretagogues. Am J Physiol 268: C611–C618

    Google Scholar 

  53. Soria B, Chanson M, Giordano E, Bosco D, Meda P (1991) Ion channels of glucose-responsive and unresponsive B-cells. Diabetes 40: 1069–1078

    Article  PubMed  CAS  Google Scholar 

  54. Giordano E, Bosco D, Cirulli V, Meda P (1991) Repeated glucose stimulation reveals distinct and lasting secretion patterns of individual rat pancreatic B-cells. J Clin Invest 87: 2178–2185

    Article  PubMed  CAS  Google Scholar 

  55. Bosco D, Meda P (1994) Individual cell-to-cell contacts rapidly recruit pancreatic β-cells for glucose-induced insulin secretion. Acta Anat (Basel) 149: 148

    Google Scholar 

  56. Van Schravendijk CFH, Kiekens R, Pipeleers DG (1992) Pancreatic βcell heterogeneity in glucose induced insulin secretion. J Biol Chem 267: 21344–21348

    PubMed  Google Scholar 

  57. Giordano E, Cirulli V, Bosco D, Rouiller D, Halban P, Meda P (1993) B-cell size influences glucose-stimulated insulin secretion. Am J Physiol 265: C358–C364

    PubMed  CAS  Google Scholar 

  58. Kiekens R, In’t Veld PA, Pipeleers DG (1992) Differences in glucose recognition by individual rat pancreatic B cells are associated with intercellular differences in glucose-induced biosynthetic activity. J Clin Invest 89: 117–125

    Article  PubMed  CAS  Google Scholar 

  59. Schuit FC, In’t Veld PA, Pipeleers DG (1988) Glucose stimulates proinsulin biosynthesis by a dose- dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci USA 85: 3865–3869

    Article  PubMed  CAS  Google Scholar 

  60. Johnston MF, Simons SA, Ramon F (1980) Interaction of anaesthetics with electrical synapses. Nature 286: 498–500

    Article  PubMed  CAS  Google Scholar 

  61. Musil LS, Goodenough DA (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation and assembly into gap junction plaques. J Cell Biol 115: 1357–1374

    Article  PubMed  CAS  Google Scholar 

  62. Stefan Y, Meda P, Neufeld M, Orci L (1987) Stimulation of insulin secretion reveals heterogeneity of pancreatic B-cells in vivo. J Clin Invest 80: 175–183

    Article  PubMed  CAS  Google Scholar 

  63. Hooper ML, Subak-Sharpe JH (1981) Metabolic co-operation between cells. Int Rev Cytol 69: 46–104

    Article  Google Scholar 

  64. Gylfe E, Grapengiesser E, Hellman B (1991) Propagation of cytoplasmic Ca2+ oscillations in clusters of pancreatic β-cells exposed to glucose. Cell Calcium 12: 229–240

    Article  PubMed  CAS  Google Scholar 

  65. Longo EA, Tornheim K, Oeeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose- stimulated rat pancreatic islets. J Biol Chem 266: 9314–9319

    PubMed  CAS  Google Scholar 

  66. Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeomillos M (1991) Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch 418: 417–422

    Article  PubMed  CAS  Google Scholar 

  67. Sorenson RL, Parsons J A (1985) Insulin secretion in mammosomatotropic tumor-bearing and pregnant rats. A role for lactogens. Diabetes 34: 338–341

    Google Scholar 

  68. Atwater I, Rosario L, Rojas E (1983) Properties of the Ca-activated K+ channel in pancreatic B-cells. Cell Calcium 4: 451–461

    Article  PubMed  CAS  Google Scholar 

  69. Lawrence TS, Beers WH, Gilula NB (1978) Transmission of hormonal stimulation by cell-to-cell communication. Nature 272: 501–506

    Article  PubMed  CAS  Google Scholar 

  70. Murray SA, Fletcher WH (1984) Hormone-induced intercellular signal transfer dissociates cyclic AMP-dependent protein kinase. J Cell Biol 98: 1710–1719

    Article  PubMed  CAS  Google Scholar 

  71. Stagg RB, Fletcher WH (1990) The hormone-induced regulation of contact-dependent cell-cell communication by phosphorylation. Endocr Rev 11: 302–325

    Article  PubMed  CAS  Google Scholar 

  72. Rasmussen H (1991) Disordered cell communication as the basis of human disease: Implications for 21st-century medicine. In: Hardy MA, Kinne RKH (eds) Biology and medicine into the 21st century. Karger, Basel, pp 33–68

    Google Scholar 

  73. Unger RH, Foster DW (1992) Diabetes Mellitus. In: Wilson JD, Foster DW (eds) Williams textbook of endocrinology 8th edn. Saunders, Philadelphia, pp 1255–1333

    Google Scholar 

  74. Cerasi E, Luff R, Efendic S (1971) Decreased sensitivity of the pancreatic beta cells to glucose in pre-diabetic and diabetic subjects. A glucose dose-response study. Diabetes 21: 224–234

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meda, P. (1997). Intercellular Communication and Insulin Secretion. In: Zahnd, G.R., Wollheim, C.B. (eds) Contributions of Physiology to the Understanding of Diabetes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60475-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60475-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64422-1

  • Online ISBN: 978-3-642-60475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics