Skip to main content

Lessons from Animal Models of Viral Myocarditis

  • Conference paper
The Role of Immune Mechanisms in Cardiovascular Disease

Abstract

Enteroviruses have been identified through in situ hybridization techniques in biopsies from up to 50% of myocarditis and 30% of dilated cardiomyopathy patients [1–3]. The prevalence of viral genomic material in the heart implies an etiological role for enteroviruses in the disease process. A major controversy, however, is whether the virus is the predominant pathogenic element in the disease, or whether the virus acts primarily as a trigger for the induction of immunopathogenic (either autoimmune or virus-immune) myocyte injury. The answer to this question impacts directly on the development of effective therapies for myocarditis and dilated cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kandolf R (1988) The impact of recombinant DNA technology on the study of enterovirus heart disease In: M Bendinelli, H Friedman, (eds) Coxsackieviruses: a general update. Plenum, New York, pp 293–318

    Google Scholar 

  2. Bowles NE Richardson PJ, Olsen EGJ, Archard LC (1986) Detection of coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1: 1120–1123

    Article  PubMed  CAS  Google Scholar 

  3. Jin O, Sole MJ, Butany JW (1990) Detection of enterovirus RNA in myocardial biopsies. Circulation 82: 8–16

    Article  PubMed  CAS  Google Scholar 

  4. Woodruff JF (1980) Viral myocarditis — A review. Am J Pathol 101: 425

    PubMed  CAS  Google Scholar 

  5. Seko Y, Yagita H, Okumura K, Yagaki Y (1994) T-cell receptor V beta gene expression in infiltrating cells in murine hearts with acute myocarditis caused by coxsackievirus B3. Circulation 89: 2170–2175

    PubMed  CAS  Google Scholar 

  6. Rabausch-Starz I, Schwarger A, Grunewald K, Muller-Hermelink KH, New N (1994) Persistence of virus and viral genome in myocardium after coxsackievirus B3-induced murine myocarditis. Clin Exp Immunol 96: 69–74

    Article  PubMed  CAS  Google Scholar 

  7. Neumann DA, Rose NR, Ansari AA, Herskowitz A (1994) Induction of multiple heart autoantibodies in mice with coxsackievirus B3 and cardiac myosin induced autoimmune myocarditis. J Immunol 152: 343–350

    PubMed  CAS  Google Scholar 

  8. Ilback NG, Fohlman J, Friman G (1994) Changed distribution and immune effects of nickel augment viral-induced inflammatory heart lesions in mice. Toxicology 91: 203–219

    Article  PubMed  CAS  Google Scholar 

  9. Gauntt CJ, Arizpe HM, Higdon AL, Rosek MM, Crawley R, Cunningham MW (1991) Anti-coxsackievirus B3 neutralizing antibodies with pathogenic potential. Eur Heart J 12 (Suppl D): 124–129

    PubMed  Google Scholar 

  10. Henke A, Huber S, Stelzner A, Whitton JL (1995) The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J Virol 69: 6720–6728

    PubMed  CAS  Google Scholar 

  11. Sato Y, Maruyama S, Kawai C, Matsumori A (1992) Effect of immunostimulant therapy on acute viral myocarditis in an animal model. Am Heart J 124: 428–434

    Article  PubMed  CAS  Google Scholar 

  12. Kishimoto C, Kuroki Y, Hiraoka Y, Ochiai H, Kurokawa M, Sasayama S (1994) Cytokine and murine coxsackievirus B3 myocarditis. Interleukin 2 suppressed myocarditis in the acute stage but enhanced the condition in the subsequent stage. Circulation 89: 2836–2842

    PubMed  CAS  Google Scholar 

  13. Herzum M, Huber SA, Weller R, Grebe R, Maisch B (1991) Treatment of experimental murine coxsackie B3 myocarditis. Eur Heart J 12 (Suppl D): 200–202

    PubMed  Google Scholar 

  14. Frizelle S, Schwarz J, Huber SA, Leslie K (1992) Evaluation of the effects of low molecular weight heparin on inflammation and collagen deposition in chronic coxsackievirus B3-induced myocarditis in A/J mice. Am J Pathol 141: 203–209

    PubMed  CAS  Google Scholar 

  15. Weller AH, Hall M, Huber SA (1992) Polyclonal immunoglobulin therapy protects against cardiac damage in experimental coxsackievirus-induced myocarditis. Eur Heart J 13: 115–119

    PubMed  CAS  Google Scholar 

  16. Chow LH, Beisel KW, McManus BM (1992) Enteroviral infection of mice with severe combined immunodeficiency: evidence for direct viral pathogenesis of myocardial injury. Lab Invest 66: 24

    PubMed  CAS  Google Scholar 

  17. Sherry B, Li XY, Tyler KL, Cullen JM, Virgin HW IV (1993) Lymphocytes protect against and are not required for reovirus-induced myocarditis. J Virol 67: 6119–6124

    PubMed  CAS  Google Scholar 

  18. Comroe JH, Dripps RD (1976) Scientific basis for the support of biomedical science. Science 192: 105–111

    Article  PubMed  Google Scholar 

  19. Holland J, Spindler K, Horocyski F, Grabau B, Nichols S, Vandepol S (1982) Rapid evolution of RNA genomes. Science 215: 1577–1585

    Article  PubMed  CAS  Google Scholar 

  20. Huber SA, Haisch C, Lodge PA (1990) Functional diversity in vascular endothelial cells: role in coxsackievirus tropism 64: 4516–4522

    CAS  Google Scholar 

  21. Klump MW, Bergmann I, Muller BC, Amers D, Kandolf R (1990) Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. J Virol 64: 1573–1583

    PubMed  CAS  Google Scholar 

  22. Herzum M, Maisch B (1992) Humoral and cellular immune reactions to the myocardium in myocarditis. Herz 17: 91–96

    PubMed  CAS  Google Scholar 

  23. Barry WH (1994) Mechanisms of immune-mediated myocyte injury. Circulation 89: 2421–2432

    PubMed  CAS  Google Scholar 

  24. Kandolf R, Klingel K, Zell R, Selinka HC, Raab U, Schneider-Brachert W, Bultmann B (1993) Molecular pathogenesis of enterovirus-induced myocarditis: virus persistence and chronic inflammation. Intervirology 35: 140–151

    PubMed  CAS  Google Scholar 

  25. Lange LG, Schreiner GF (1994) Immune mechanisms of cardiac disease. N Engl J Med 330: 1129–1135

    Article  PubMed  CAS  Google Scholar 

  26. Martino TA, Liu P, Soule MJ (1994) Viral infection and the pathogenesis of dilated cardiomyopathy. Circ Res 74: 182–188

    PubMed  CAS  Google Scholar 

  27. Rose NR, Neumann DA, Herskowitz A (1992) Coxsackievirus myocarditis. Adv Intern Med 37: 411–429

    PubMed  CAS  Google Scholar 

  28. Huber SA (1993) Animal models: immunological aspects. In: JE Banatvala (ed) Viral infections of the heart. Arnold, London, pp 82–109

    Google Scholar 

  29. Woodruff JF, Woodruff JJ (1974) Involvement of T lymphocytes in the pathogenesis of coxsackievirus B3 heart disease. J Immunol 113: 1726–1734

    PubMed  CAS  Google Scholar 

  30. Woodruff JF (1979) Lack of correlation between neutralizing antibody production and suppression of coxsackievirus B3 replication in target organs: evidence for involvement of mononuclear inflammatory cells in host defense. J Immunol 123: 31–36

    PubMed  CAS  Google Scholar 

  31. Huber SA, Job LP (1983) Cellular immune mechanisms in coxsackievirus group B, type 3-induced myocarditis in Balb/c mice. In: JJ Spitzer (ed) Myocardial injury. Plenum, New York, pp 491–507

    Google Scholar 

  32. Herzum M, Rupert V, Kuytz B, Jomau H, Nakamura I, Maisch B (1994) Coxsackievirus B3 infection leads to cell death of cardiac myocytes. J Mol Cell Cardiol 26: 907–913

    Article  PubMed  CAS  Google Scholar 

  33. Drude L, Wiemers F, Maisch B (1991) Impaired myocyte function in vitro incubated with sera from patients with myocarditis. Eur Heart J 12 (Suppl D): 36–38

    PubMed  Google Scholar 

  34. Kuhl U, Melzner B, Schafer B, Schultheiss HP, Strauer BE (1991) The Ca-channel as cardiac autoantigen. Eur Heart J 12 (Suppl D): 99–104

    PubMed  Google Scholar 

  35. Sharaf AR, Narrila J, Nieol PD, Southern JF, Khau BA (1994) Cardiac sarcoplasmic reticulum calcium ATPase, an autoimmune antigen in experimental cardiomyopathy. Circulation 89: 1217–1228

    PubMed  CAS  Google Scholar 

  36. Wallukat G, Wallenberger A, Morwinski R, Pitschner HF (1995) Anti-beta 1-adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy mapping of epitopes in the first and second extracellular loops. J Mol Cell Cardiol 27: 397–406

    Article  PubMed  CAS  Google Scholar 

  37. Schultheiss HP (1989) The significance of autoantibodies against the ADP/ATP carrier for the pathogenesis of myocarditis and dilated cardiomyopathy — clinical and experimental data. Springer Semin Immunopathol 11: 15–30

    Article  PubMed  CAS  Google Scholar 

  38. Schultheiss HP, Schwimmbeck P (1986) Autoantibodies to the adenine-nucleotide trans-locator (ANT) in myocarditis (MC) — prevalence, clinical correlates and diagnostic value. Circulation 74: 142

    Google Scholar 

  39. Schultheiss HP, Kuhl U, Schauer R, Schulze K, Kemkes B, Becker BF (1988) Antibodies against the ADP/ATP carrier alter myocardial function by disturbing cellular energy metabolism. In: HP Schultheiss (ed) New concepts in viral heart disease. Springer, Berlin Heidelberg New York, pp 243–258

    Google Scholar 

  40. Hamrell BB, Huber SA, Leslie KO (1994) Reduced unloaded sarcomere shortening velocity and a shift to a slower myosin isoform in acute murine coxsackievirus myocarditis. Circ Res 75: 462–472

    PubMed  CAS  Google Scholar 

  41. Hamrell BB, Huber SA and Leslie KO (1995) Depressed unloaded sarcomere shortening velocity in acute murine coxsackievirus myocarditis: myocardial remodelling in the absence of necrosis or hypertrophy. Eur Heart J 16 (Suppl O): 31–35

    PubMed  Google Scholar 

  42. Reyes MP, Ho KL, Smith F, Lerner AM (1981) A mouse model of dilated type cardiomyopathy due to coxsackievirus B3. J Infect Dis 144: 232–236

    Article  PubMed  CAS  Google Scholar 

  43. Chien KR, Knowlton KU, Zu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiological response. FASEB J 5: 3037–3046

    PubMed  CAS  Google Scholar 

  44. Huber SA, Lodge PA (1986) Coxsackievirus B3 myocarditis: identification of different pathogenic mechanisms in DBA/2 and Balb/c mice. Am J Pathol 122: 284–291

    PubMed  CAS  Google Scholar 

  45. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huber, S.A., Hamrell, B.B., Knowlton, K.U. (1997). Lessons from Animal Models of Viral Myocarditis. In: Schultheiss, HP., Schwimmbeck, P. (eds) The Role of Immune Mechanisms in Cardiovascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60463-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60463-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61358-9

  • Online ISBN: 978-3-642-60463-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics