Skip to main content

Functions and Responses of the Leaf Apoplast Under Stress

  • Chapter

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 58))

Abstract

The extraprotoplastic matrix of plant cells including the cell wall is here defined as apoplast. The most obvious functions associated with the apoplast are (1) establishment and maintenance of cell shape, (2) its role in turgor development, (3) uptake and transport of water, ions and metabolites as, for instance, in the root apoplast and xylem, and (4) apoplasmic assimilate loading of the phloem in many species. These topics have frequently been reviewed (Läuchli 1976; Lüttge and Higinbotham 1979; van Bel 1993; Canny 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aked J, Hall JL (1993) New Phytol 123: 283–288.

    CAS  Google Scholar 

  • Aloni B, Daie J, Wyse RE (1988) Plant Physiol 88: 367–369.

    PubMed  CAS  Google Scholar 

  • Asard H, Horemans N, Caubergs RJ (1992) FEBS Lett 306: 143–146.

    PubMed  CAS  Google Scholar 

  • Asard H, Horemans N, Caubergs RJ (1995) Protoplasma 184: 36–41.

    CAS  Google Scholar 

  • Askerlund P, Larsson C, Widell S (1989) Physiol Plant 76: 123–134.

    CAS  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) In: Preiss J (ed) The biochemistry of Plants. Academic Press, San Diego, pp 297–371.

    Google Scholar 

  • Baron-Epel O, Gharyal PK, Schindler M (1988) Planta 175: 389–395.

    CAS  Google Scholar 

  • Beffa R, Martin HV, Pilet P-E (1990) Plant Physiol 94: 485–491.

    PubMed  CAS  Google Scholar 

  • Bergmann CW, Ito Y, Singer D, Albersheim P, Darvill AG, Benhamou N, Nuss L, Salvi G, Cervone F, De Lorenzo G (1994) Plant J 5: 625–634.

    PubMed  CAS  Google Scholar 

  • Betz C, Ullrich CI, Hartung W (1993) J Exp Bot 44: 35–39.

    CAS  Google Scholar 

  • Betz M, Martinoia E, Hincha DK, Schmitt JM, Dietz K-J (1992) Phytochemistry 31: 433–440.

    CAS  Google Scholar 

  • Bohlmann H, Apel K (1991) Annu Rev Plant Physiol Plant Mol Biol 42: 227–240.

    CAS  Google Scholar 

  • Boller T, (1987) In: Kosuge T, Nester EW (eds) Plant-microbe interactions, vol 2. Macmillan, New York, pp 385–414.

    Google Scholar 

  • Boller T (1989) In: Boss WF, Morr£ DJ (eds) Second messengers in plant growth and development. Alan Liss, New York, pp 227–256.

    Google Scholar 

  • Bowling DJF (1987) J Exp Bot 38: 1351–1355.

    CAS  Google Scholar 

  • Bowling DJF, Edwards A (1984) J Exp Bot 35: 1641–1645.

    CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Cell 70: 21–30.

    PubMed  CAS  Google Scholar 

  • Bray EA (1990) Plant Cell Environ 13: 531–538.

    CAS  Google Scholar 

  • Bressan RA, Nelson DE, Iraki DE, LaRosa PC, Singh NK, Hasegawa PM, Carpita NC (1990) In: Katterman F (ed) Environmental injury to plants. Academic Press, San Diego, pp 137–171.

    Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Plant Cell 6: 1703–1712.

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant Physiol 108: 1353–1358.

    PubMed  CAS  Google Scholar 

  • Brune A, Dietz K-J (1995) J Plant Nutr 18:853–868.

    Google Scholar 

  • Brune A, Urbach W, Dietz K-J (1994a) Plant Cell Environ 17: 153–162.

    CAS  Google Scholar 

  • Brune A, Urbach W, Dietz K-J (1994b) J Exp Bot 45:1189–1196.

    CAS  Google Scholar 

  • Brune A, Urbach W, Dietz K-J (1995) New Phytol 129:404–409.

    Google Scholar 

  • Canny MJ (1987) Plant Cell Environ 10:271–274.

    CAS  Google Scholar 

  • Canny MJ (1990a) New Phytol 114: 341–368.

    Google Scholar 

  • Canny MJ (1990b) New Phytol 116: 263–268.

    Google Scholar 

  • Canny MJ (1995) Annu Rev Plant Physiol Plant Mol Biol 46: 215–236.

    CAS  Google Scholar 

  • Canny MJ, McCully ME (1988a) Austr J Plant Physiol 15: 541–555.

    Google Scholar 

  • Canny MJ, McCully ME (1988b) Austr J Plant Physiol 15: 557–566.

    CAS  Google Scholar 

  • Cassab GL, Varner JE (1988) Annu Rev Plant Physiol Plant Mol Biol 39: 321–353.

    CAS  Google Scholar 

  • Castillo FJ, Penel C, Greppin H (1984) Plant Physiol 74: 846–851.

    PubMed  CAS  Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy H (1994) Science 264: 74–77.

    PubMed  CAS  Google Scholar 

  • Chang PLY, Trevithick JR (1974) Arch Microbiol 101: 281–293.

    PubMed  CAS  Google Scholar 

  • Chen RD, Yu LX, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Mol Gen Genet 245: 195–202.

    PubMed  CAS  Google Scholar 

  • Cope J (1980) J Gen Microbiol 119:253–255.

    Google Scholar 

  • Cosgrove DJ, Cleland RE (1983) Plant Physiol 72:326–331.

    PubMed  CAS  Google Scholar 

  • Covarrubias AA, Ayala JW, Reyes JL, Hernandez M, Garciar-rubio A (1995) Plant Physiol 107: 1119–1128.

    PubMed  CAS  Google Scholar 

  • Daeter W, Hartung W (1995) Plant Cell Environ 18: 1367–1376.

    CAS  Google Scholar 

  • Dannel F, Pfeffer H, Marschner H (1995) J Plant Physiol 146: 273–278.

    CAS  Google Scholar 

  • Dietz K-J, Hartung W (1996) Prog Bot 57: 32–53.

    Google Scholar 

  • Dietz K-J, Schramm M, Betz M, Busch H, Zink C, Martinoia E (1992a) Planta 187: 425–430.

    CAS  Google Scholar 

  • Dietz K-J, Schramm M, Lang B, Lanzl-Schramm A, Zink C, Martinoia E (1992b) Planta 187: 431–437.

    CAS  Google Scholar 

  • Dixon RA, Harrison MJ, Lamb CJ (1994) Annu Rev Phytopathol 32: 479–501.

    CAS  Google Scholar 

  • Edgington LV, Peterson CA (1977) In: Siegel MR, Sister HD (ed) Antifungal compounds. Marcel Dekker, New York, pp 51–89.

    Google Scholar 

  • Edwards MC, Smith GN, Bowling DJF (1988) J Exp Bot 39: 1541–1547.

    Google Scholar 

  • Elstner EF (1990) Der Sauerstoff: Biochemie, Biologie und Medizin. BL Wissenschaftsverlag, Mannheim.

    Google Scholar 

  • Ewald R, Heese P, Klein U (1991) J Chromatogr 542: 239–245.

    Google Scholar 

  • Farquhar G, von Caemmerer S, Berry JA (1981) Planta 149: 78–90.

    Google Scholar 

  • Ferte N, Moustacas AM, Nari J, Teissere M, Borel M, Thiebart I, Noat G (1993) Eur J Biochem 211: 297–304.

    PubMed  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) Annu Rev Plant Physiol 29: 511–566.

    CAS  Google Scholar 

  • Foyer CH (1987) Plant Physiol Biochem 25: 649–657.

    CAS  Google Scholar 

  • Freudling C, Starrach N, Flach D, Gradmann D, Mayer WE (1988) Planta 175: 193–203.

    Google Scholar 

  • Fry SC (1979) Planta 146:343–351. Fry SC (1986) Annu Rev Plant Physiol 37: 65–86.

    Google Scholar 

  • Fry SC (1991) In: Methods in plant biochemistry, Dey PM, Harborne JB (eds) Vol V. Academic Press, London, pp 307–331.

    Google Scholar 

  • Fuhrer J (1982) Plant Cell Environ 5: 263–270.

    CAS  Google Scholar 

  • Gillet C, Cambier P, Liners F (1992) Plant Physiol 100: 846–852.

    PubMed  CAS  Google Scholar 

  • Gio LZ, Boyer JS (1992) Plant Physiol 100: 2071–2080.

    Google Scholar 

  • GrambowHJ (1986) In: Greppin H, Peneil C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, pp 31–42.

    Google Scholar 

  • Greppin H, Penel C, Gaspar T (1986) Molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva. Griffith M, Ala P, Yang DSC, Hon W-C, Moffatt BA (1992) Plant Physiol 100: 593–596.

    Google Scholar 

  • Grignon C, Sentenac H (1991) Annu Rev Plant Physiol Plant Mol Biol 42: 103–128.

    CAS  Google Scholar 

  • Grimes HD, Perkins KK, Boss WF (1983) Plant Physiol 72: 1016–1020.

    PubMed  CAS  Google Scholar 

  • Gross GG (1977) Phytochemistry 16: 319–321.

    CAS  Google Scholar 

  • Guderian R, Tingey DT, Rabe R (1985) In: Guderian R (ed) Air pollution by photochemical oxidants. Springer, Berlin Heidelberg New York, pp 205–296.

    Google Scholar 

  • Hajibagheri MA, Hall JL, Flowers TJ (1984) J Exp Bot 35: 1547–1557.

    Google Scholar 

  • Hartung W, Slovik S (1991) New Phytol 119: 361–382.

    CAS  Google Scholar 

  • Hartung W, Radin JW, Hendrix DL (1988) Plant Physiol 86: 908–913.

    PubMed  CAS  Google Scholar 

  • Hartung W, Weiler EW, Rading JW (1992) J Plant Physiol 140: 324–327.

    CAS  Google Scholar 

  • Hedrich R, Marten I (1993) EMBO J 12: 897–901.

    PubMed  CAS  Google Scholar 

  • Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt HW (1994) Plant J 6: 741–748.

    CAS  Google Scholar 

  • Herget T, Schell J, Schreier PH (1990) Mol Gen Genet 224: 467–476.

    Google Scholar 

  • Hoj PB, Fincher GB (1995) Plant J 7: 367–379.

    PubMed  CAS  Google Scholar 

  • Hollenbach B, Schreiber U, Hartung W, Dietz KJ (1997) Planta (submitted).

    Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1994) Plant Physiol 104: 1455–1458.

    PubMed  CAS  Google Scholar 

  • Horst WJ (1995) Z Pflanzenernähr Bodenk 158: 419–428.

    CAS  Google Scholar 

  • Hsiao TC (1973) Annu Rev Plant Physiol 24: 519–570.

    CAS  Google Scholar 

  • Hülsbruch M (1944) Planta 34: 221–248.

    Google Scholar 

  • Hülsbruch M (1944) In: Percy KE, Cape JN, Jagels R, Simpson CJ (eds) Air pollutant and the leaf cuticle. Springer, Berlin Heidelberg New York, NATO ASI Ser G 36:81–96.

    Google Scholar 

  • Iraki NM, Bressan RA, Hasegawa PM, Carpita NC (1989a) Plant Physiol 91: 39–47.

    CAS  Google Scholar 

  • Iraki NM, Singh N, Bressan RA, Carpita NC (1989b) Plant Physiol 91: 48–53.

    CAS  Google Scholar 

  • Jachetta JJ, Appleby AP, Boersma L (1986) Plant Physiol 82: 995–999.

    PubMed  CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991) J Exp Bot 42: 1091–1103.

    CAS  Google Scholar 

  • Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Annu Rev Phytophathol 32: 439–459.

    CAS  Google Scholar 

  • Laisk A, Pfanz H, Heber U (1988a) Planta 173: 230–240.

    CAS  Google Scholar 

  • Laisk A, Pfanz H, Heber U (1988b) Planta 173: 241–252.

    CAS  Google Scholar 

  • Laisk A, Kull O, Moldau H (1989) Plant Physiol 90: 1163–1167.

    PubMed  CAS  Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H Jr (1990) Plant Physiol 95: 882–889.

    Google Scholar 

  • Läuchli A (1976) In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology: transport in plants II, vol 2. Springer, Berlin Heidelberg New York, pp 3–34.

    Google Scholar 

  • Li Z-C, McClure JW, Hagerman AE (1989) Plant Physiol 90: 185–190.

    PubMed  CAS  Google Scholar 

  • Lohaus G, Winter H, Riens B, Heldt HW (1995) Bot Acta 108: 270–275.

    CAS  Google Scholar 

  • Long JM, Widders IE (1990) Plant Physiol 94: 1040–1047.

    PubMed  CAS  Google Scholar 

  • Lucas PW, Rantenan L, Mehlhorn H (1993) New Phytol 124: 265–275.

    CAS  Google Scholar 

  • Luttge U, Higinbotham N (1979) Transport in plants. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Luwe M (1994) Zur Entgiftung von Ozon im Blatt durch Antioxidantien unter besonderer Berücksichtigung des Apoplasten. PhD Thesis, Universität Würzburg, Würzburg.

    Google Scholar 

  • Luwe M, Takahama U, Heber U (1993) Plant Physiol 101: 969–976.

    PubMed  CAS  Google Scholar 

  • Luwe M, Heber U (1995) Planta 197: 448–455.

    CAS  Google Scholar 

  • Macnair MR (1993) Tansley Review No 49. New Phytol 124: 541–559.

    CAS  Google Scholar 

  • Marentes E, Griffith M, Mlynarz A, Brush RA (1993) Physiol Plant 87: 499–507.

    CAS  Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Annu Rev Biochem 53: 625–663.

    PubMed  CAS  Google Scholar 

  • Mimura T (1995) Plant Cell Physiol 36: 1–7.

    CAS  Google Scholar 

  • Mimura T, Dietz K-J, Kaiser WM, Schramm M, Kaiser G, Heber U (1990) Planta 180: 139–146.

    CAS  Google Scholar 

  • Mimura T, Zu-Hua Y, Wirth E, Dietz K-J (1992) Plant Cell Physiol 33: 563–568.

    CAS  Google Scholar 

  • Molina A, Garcia-Olmedo F (1993) Plant J 4: 983–991.

    PubMed  CAS  Google Scholar 

  • Money NP (1990) Exp Mycol 14: 234–242.

    Google Scholar 

  • Mühling KH, Plieth C, Hansen UP, Sattelmacher B (1995) J Exp Bot 46: 377–382.

    Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Annu Rev Phytopathol 30: 369–389.

    CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Plant Physiol 109: 735–742.

    PubMed  CAS  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, San Francisco.

    Google Scholar 

  • Ntsika G, Delrot S (1986) Physiol Plant 68: 145–153.

    CAS  Google Scholar 

  • Oertli JJ (1969) Agrochimica 12: 461–469.

    Google Scholar 

  • Pfanz H, Dietz K-J (1987) J Plant Physiol 129: 41–48.

    CAS  Google Scholar 

  • Pfanz H, Heber U (1989) In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis. Springer, Berlin Heidelberg New York, pp 322–343.

    Google Scholar 

  • Pfanz H, Dietz K-J, Weinerth I, Oppmann B (1990) In: Rennenberg H, Brunold C, Dekkok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SBP Academic Publishing, The Hague, pp 229–233.

    Google Scholar 

  • Pfanz H, Würth G, Oppmann B, Schultz G (1992) Phyton 32: 95–98.

    CAS  Google Scholar 

  • Pinedo ML, Segarra C, Conde RD (1993) Physiol Plant 88: 287–293.

    CAS  Google Scholar 

  • Polle A, Chakrabarti K, Schürmann W, Rennenberg H (1990) Plant Physiol 94: 312–319.

    PubMed  CAS  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Plant Physiol 106: 53–60.

    PubMed  CAS  Google Scholar 

  • Pomper KW, Breen PJ (1995) J Exp Bot 46:743–752. Pyee J, Kolattukudy PE (1995) Plant J 7: 49–59.

    Google Scholar 

  • Raschke K (1979) In: Haupt W, Feinleib ME (eds) Encyclopedia of plant physiology, vol 7. Springer, Berlin Heidelberg New York, pp 383–441.

    Google Scholar 

  • Rautenkranz AAF, Li L, Mächler F, Martinoia E, Oertli JJ (1994) Plant Physiol 106: 187–193.

    PubMed  CAS  Google Scholar 

  • Rengel Z (1992) New Phytol 121: 499–513.

    CAS  Google Scholar 

  • Rohringer R, Ebrahim-Nesbat F, Wolf G (1983) J Exp Bot 34: 1589–1605.

    CAS  Google Scholar 

  • Sandermann H Jr (1991) Trends Biochem Sci 17: 82–84.

    Google Scholar 

  • Sawicka T, Kacperska A (1995) J Plant Physiol 145: 357–362.

    CAS  Google Scholar 

  • Schraudner M, Ernst D, Langebartels C, Sandermann H Jr (1992) Plant Physiol 99: 1321–1328.

    PubMed  CAS  Google Scholar 

  • Sen Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Plant Physiol 103: 1067–1073.

    PubMed  Google Scholar 

  • Serpa MD, Matthews MA (1992) Plant Physiol 100: 1852–1857.

    Google Scholar 

  • Showalter AM (1993) Plant Cell 5: 9–23.

    PubMed  CAS  Google Scholar 

  • Singh NK, LaRosa PC, Handa AK, Hasegawa PM, Bressan RA (1987) Proc Natl Acad Sci USA 84: 739–743.

    PubMed  CAS  Google Scholar 

  • Slovik S, Hartung W (1992) Planta 187: 37–47.

    CAS  Google Scholar 

  • Smith JA, Nobel PS (1986) J Exp Bot 37: 1044–1053.

    Google Scholar 

  • Speer M, Kaiser WM (1991) Plant Physiol 97: 990–997.

    PubMed  CAS  Google Scholar 

  • Speer M, Kaiser WM (1994) Plant Cell Environ 17: 1223–1231.

    Google Scholar 

  • Speer M, Brune A, Kaiser WM (1994) Plant Cell Environ 17: 1215–1221.

    Google Scholar 

  • Staehelin A (1991) Plant Cell 3: 553.

    PubMed  Google Scholar 

  • Stafford HA (1991) Plant Cell 3: 331.

    PubMed  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, de Vries SC (1991) Plant Cell 3: 907–921.

    PubMed  CAS  Google Scholar 

  • Strack D, Heilemann J, Wray V, Dirks H (1988) Phytochemistry 28: 2071–2078.

    Google Scholar 

  • Streller S, Wingsle G (1994) Planta 192: 195–201.

    PubMed  CAS  Google Scholar 

  • Sturm A, Chrispeels MJ (1990) Plant Cell 2: 1107–1119.

    PubMed  CAS  Google Scholar 

  • Taiz L (1984) Annu Rev Plant Physiol Plant Mol Biol 35: 585–657.

    CAS  Google Scholar 

  • Takahama U, Oniki T (1992) Plant Cell Physiol 33: 379–387.

    CAS  Google Scholar 

  • Takahama U, Veljovic-Iovanovic S, Heber U (1992) Plant Physiol 100: 261–266.

    PubMed  CAS  Google Scholar 

  • Tang X, Ruffner H-P, Scholes JD, Rolfe SA (1996) Planta 198: 17–23.

    PubMed  CAS  Google Scholar 

  • Tetlow IJ, Farrar JF (1993) J Exp Bot 44: 929–936.

    CAS  Google Scholar 

  • Toubart P, Desiderio A, Salvi G, Cervone F, Daroda L, De Lorenuo G (1992) Plant J 2: 367–373.

    PubMed  CAS  Google Scholar 

  • Van Bel AJE (1993) Annu Rev Plant Physiol Plant Mol Biol 44: 253–281.

    Google Scholar 

  • Van Camp W, Willekens Hf Bowler C, Van Montagu M, Inzé D, Reupold-Popp P, Sandermann H Jr, Langebartels C (1994) Bio/Technology 12: 165–168.

    Google Scholar 

  • Van der Valk HCPM, van Loon LC (1988) Plant Physiol 87: 536–541.

    PubMed  Google Scholar 

  • Wallace G, Fry SC (1994) Int Rev Cytol 151:229–267.

    PubMed  CAS  Google Scholar 

  • Wang J, Evangelou BP, Nielsen MT (1992) Plant Physiol 100: 496–501.

    PubMed  CAS  Google Scholar 

  • Wenzel AA, Mehlhorn H (1995) J Exp Bot 46: 867–872.

    CAS  Google Scholar 

  • Wessels JGH (1993) New Phytol 123: 397–413.

    CAS  Google Scholar 

  • Winter H, Robinson DG, Heldt HW (1993) Planta 191: 180–190.

    CAS  Google Scholar 

  • Winter H, Robinson DG, Heldt HW (1994) Planta 193: 530–535.

    CAS  Google Scholar 

  • Woolhouse HW (1983) In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12c. Springer, Berlin Heidelberg New York, pp 245–300.

    Google Scholar 

  • Ye ZH, Song YR, Marcus A, Varner JE (1991) Plant J 1: 175–183.

    PubMed  CAS  Google Scholar 

  • Zhu B, Chen THH, Li PH (1995) Plant Physiol 108: 929–937.

    PubMed  CAS  Google Scholar 

  • Zulu JN, Farrar JF, Whitebread R (1991) New Phytol 118: 553–558.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietz, KJ. (1997). Functions and Responses of the Leaf Apoplast Under Stress. In: Behnke, HD., Lüttge, U., Esser, K., Kadereit, J.W., Runge, M. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60458-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60458-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64415-3

  • Online ISBN: 978-3-642-60458-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics