Advertisement

Trace Elements in Size-Fractionated Particulates: Concentrations and Dry Deposition into a Forest Ecosystem

Chapter
  • 123 Downloads

Abstract

Considering the dependence of the deposition velocity on the particle-size (cf. Fig. 6.2), exact knowledge of the concentration distribution over the size-fractions is an essential precondition for a correct determination of dry deposition. The relative contributions of the individual size fractions to the total flux vary from element to element, since the concentration distributions can be quite different. Here, the origin plays an important part. Elements of predominantly anthropogenic origin, for instance Cd or Pb, show a rise in the concentration in air with decreasing aerodynamic diameter. This is the outcome of the long-range transport. On the other hand, elements of essentially geogenic origin, such as Ca and Fe, exhibit a contrary behaviour: the concentration decreases with diminishing diameter; nearby sources markedly contribute to the element content in the particulate phase. These facts are illustrated in Fig. 9.1, where the differential trace element concentrations are plotted with decreasing particle diameter from left to right according to the six fractions of the impactor used (cf. Sect. 5.1.3). The diagram also demonstrates the excellent detection sensitivity of the applied procedures which is in the order of pg/m3.

Keywords

Wind Direction Forest Ecosystem Deposition Velocity Aerodynamic Diameter German Democratic Republic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bundesumweltministerium (ed)(1992) Umweltschutz in Deutschland - Nationalbericht der Bundesrepublik Deutschland für die Konferenz der Vereinten Nationen über Umwelt und Entwicklung in Brasilien. Economica Verlag, BonnGoogle Scholar
  2. Hertlein F (1990) Untersuchungen zur Anwendung der Gradientenmethode auf luftgetragene Partikel. Diplomarbeit, Fachbereich Angewandte Naturwissenschaften, Fachhochschule LübeckGoogle Scholar
  3. Michaelis W (1986a) Naß- und Trockendeposition von Schwermetallen. In: Klose W, Leßmann E (eds) Bodenschutz - Lösung durch Technik, ENVITEC 86. Vulkan-Verlag, Essen, pp 36–41Google Scholar
  4. Michaelis W (1986b) Multielement analysis of environmental samples by total-reflection X-ray fluorescence spectrometry, neutron activation analysis and inductively coupled plasma optical emission spectroscopy. Fresenius Z Anal Chem 324: 662–671CrossRefGoogle Scholar
  5. Michaelis W (1988) Experimental studies on dry deposition of heavy metals and gases. In: van Dop H (ed) Air pollution modeling and its application VI, vol 11. Plenum, New York, pp 61–74Google Scholar
  6. Michaelis W (1991) Trace analysis of geological and environmental samples. In: Störr M, Henning KH, Adolphi P (eds) Proc 7th EUROCLAY Conf, Dresden’91, vol II. Ernst-Moritz-Arndt Universität Greifswald, pp 761–766Google Scholar
  7. Michaelis W, Prange A (1988) Trace analysis of geological and environmental samples by total-reflection X-ray fluorescence spectrometry. Nucl Geophys 2 (4): 231–245Google Scholar
  8. Michaelis W, Stößel RP (1986) Untersuchungen zur Schwermetalldeposition auf der Insel Pell-worm - ein Beitrag zur Ermittlung des atmosphärischen Schadstoffeintrags in die Nordsee. In: GKSS Forschungszentrum Geesthacht, GKSS Jahresbericht 1986, pp 8–23Google Scholar
  9. Michaelis W, Fanger HU, Niedergesäß R, Schwenke H (1985a) Intercomparison of the multi-element analytical methods TXRF, NAA and ICP with regard to trace element determinations in environmental samples. In: Sansoni B (ed) Instrumentelle Multielementanalyse. VCH Verlagsgesellschaft, Weinheim, pp 693–709Google Scholar
  10. Michaelis W, Prange A, Knoth J (1985b) Applications of total-reflection X-ray fluorescence in multi-element analysis. In: Sansoni B (ed) Instrumentelle Multielementanalyse. VCH Verlagsgesellschaft, Weinheim, pp 269–289Google Scholar
  11. Michaelis W, Schönburg M, Stößel RP (1988) Trocken- und Naßdeposition von Schwermetallen und Gasen. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 88/E/55, pp 19–59Google Scholar
  12. Michaelis W, Schönburg M, Stößel RP (1989) Deposition of atmospheric pollutants into a North German forest ecosystem. In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 3–12Google Scholar
  13. Michaelis W, Pepelnik R, Theopold F, Rademacher P (1992a) Deposition atmosphärischer Spurenstoffe und Stoffflüsse im Ökosystem Wald. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 11–59Google Scholar
  14. Michaelis W, Pepelnik R, Prange A (1992b) Application of TXRF in environmental research. In: Barret CS, Gilfrich JV, Huang TC, Jenkins R, McCarthy GJ, Predecki PK, Ryon R, Smith DK (eds) Advances in X-ray analysis, vol 35B. Plenum Press, New York, pp 953–958CrossRefGoogle Scholar
  15. Michaelis W, Pepelnik R, Rademacher P, Riebesell M (1992c) Transfer of atmospheric pollutants into a forest ecosystem. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier, London, pp 596–597Google Scholar
  16. Pepelnik R, Erbslöh B, Michaelis W, Prange A (1993) Determination of trace element deposition into a forest ecosystem using total-reflection X-ray fluorescence. Spectrochim Acta 48B (2): 223–229Google Scholar
  17. Rademacher P, Bauch J, Michaelis W (1988) Einfluß der Elementkonzentration der Bodenlösung auf den Elementgehalt in gesunden und geschädigten Fichten des Standortes “Postturm”. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 88/E/55, pp 215–254Google Scholar
  18. Rademacher P, Ulrich B, Michaelis W (1992) Bilanzierung der Elementvorräte und Elementflüsse innerhalb der Ökosystemkompartimente Krone, Stamm, Wurzel und Boden eines belasteten Fichtenbestandes am Standort “Postturm”. In: Michaelis W, Bauch J (eds) Luftverunreinigungen and Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 149–186Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.GKSS Research Centre GeestchachtGeesthachtGermany

Personalised recommendations