Advertisement

Experimental Procedures

Chapter
  • 124 Downloads

Abstract

In addition to direct interaction, atmospheric pollutants are deposited on the surface of the earth via precipitation by the processes of washout and rainout. From a scientific point of view, in particular with regard to the objective of measuring fluxes into and within the ecosystem, including their balances, each component has to be quantified, i.e. it is indispensable to separate as far as possible wet and dry deposition. One of the devices required is the so-called wet-only sampler. The demands can be quite well fulfilled by automatic devices which by means of a moisture sensor are opened and closed at the start and at the end of rainfall, respectively. Strictly speaking, the ‘wet deposition’ has to be defined as the amount of a constituent which is collected during the opening of the sampler. As a consequence, in particular during events with very low precipitation intensity, the results may include non-negligible contributions of the dry deposition. Therefore, the moisture sensor has to be very efficient.

Keywords

Instrumental Neutron Activation Analysis Trace Element Analysis Inductively Couple Plasma Optical Emission Spectroscopy Moisture Sensor Sample Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiginger H, Wobrauschek P (1974) A method for quantitative X-ray fluorescence analysis in the nanogram region. Nucl Instrum Methods 114: 157–158CrossRefGoogle Scholar
  2. Bauer M (1981) Untersuchungen zur optischen Emissionsspektroskopie mit induktiv angeregter Plasmafackel. Thesis, University of Hamburg. GKSS Forschungszentrum Geesthacht, GKSS 82/E/9Google Scholar
  3. Berneike W (1987) Untersuchungen zu Einsatzmöglichkeiten der optischen Emissionsspektrometrie mit induktiv geheizter Argonplasmafackel bei der Analyse von Umweltproben. Thesis, University of Hamburg. GKSS Forschungszentrum Geesthacht, GKSS 87/E/36Google Scholar
  4. Boumans PWJM, DeBoer FJ (1976) Studies of a radio frequency inductively coupled argon plasma for optical emission spectrometry. III. Interference effects under compromise conditions for simultaneous multi-element analysis. Spectrochim Acta 31B: 355–375Google Scholar
  5. Dannecker W, Naumann K, Bergmann J (1982) Untersuchung der Korngrößenverteilung von Schwebstäuben sowie des Eluationsverhaltens darin enthaltener umweltrelevanter Elemente. Staub-Reinhalt Luft 42,4: 176–182Google Scholar
  6. Klockenkämper R, Knoth J, Prange A, Schwenke H (1992) Total-reflection X-ray fluorescence spectroscopy. Anal Chem 64 (23): 1115–1121CrossRefGoogle Scholar
  7. Knoth J, Schwenke H (1977) GKSS Patent P 27 36 960. 4Google Scholar
  8. Knoth J, Schwenke H (1978) An X-ray fluorescence spectrometer with totally reflecting sample support for trace analysis at the ppb level. Fresenius Z Anal Chem 291: 200–204CrossRefGoogle Scholar
  9. Knoth J, Schwenke H (1980) A new totally reflecting X-ray fluorescence spectrometer with detection limits below 10-11 g. Fresenius Z Anal Chem 301: 7–9CrossRefGoogle Scholar
  10. Michaelis W (1986a) Naß- und Trockendeposition von Schwermetallen. In: Klose W, Leßmann E (eds) Bodenschutz - Lösung durch Technik, ENVITEC 86. Vulkan-Verlag, Essen, pp 36–41Google Scholar
  11. Michaelis W (1986b) Multielement analysis of environmental samples by total-reflection X-ray fluorescence spectrometry, neutron activation analysis and inductively coupled plasma optical emission spectroscopy. Fresenius Z Anal Chem 324: 662–671CrossRefGoogle Scholar
  12. Michaelis W (1988) Experimental studies on dry deposition of heavy metals and gases. In: van Dop H (ed) Air pollution modeling and its application VI, vol 11. Plenum Press, New York, pp 61–74Google Scholar
  13. Michaelis W (1991) Trace analysis of geological and environmental samples. In: Störr M, Henning KH, Adolphi P (eds) Proceedings 7th EUROCLAY Conference, Dresden’91, vol II. Ernst-Moritz-Arndt Universität Greifswald, pp 761–766Google Scholar
  14. Michaelis W, Prange A (eds)(1986) Totalreflexions-Röntgenfluoreszenzanalyse - 1st Workshop. GKSS Forschungszentrum Geesthacht, GKSS 86/E/61Google Scholar
  15. Michaelis W, Prange A (1988) Trace analysis of geological and environmental samples by total-reflection X-ray fluorescence spectrometry. Nucl Geophys 2 (4): 231–245Google Scholar
  16. Michaelis W, Fanger HU, Niedergesäß R, Schwenke H (1985a) Intercomparison of the multielement analytical methods TXRF, NAA and ICP with regard to trace element determinations in environmental samples. In: Sansoni B (ed) Instrumentelle Multielementanalyse. VCH Verlagsgesellschaft, Weinheim, pp 693–709Google Scholar
  17. Michaelis W, Prange A, Knoth J (1985b) Applications of total-reflection X-ray fluorescence in multi-element analysis. In: Sansoni B (ed) Instrumentelle Multielementanalyse. VCH Verlagsgesellschaft, Weinheim, pp 269–289Google Scholar
  18. Michaelis W, Knoth J, Prange A, Schwenke H (1985c) Trace analytical capabilities of total-reflection X-ray fluorescence analysis. In: Barret CS, Predecki PK, Leyden DE (eds) Advances in X-ray analysis, vol 28. Plenum Press, New York, pp 75–83Google Scholar
  19. Michaelis W, Schönburg M, Stößel RP (1988) Trocken- und Naßdeposition von Schwermetallen und Gasen. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Posttum”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 88/E/55, pp 19–59Google Scholar
  20. Michaelis W, Schönburg M, Stößel RP (1989) Deposition of atmospheric pollutants into a North German forest ecosystem. In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 3–12Google Scholar
  21. Michaelis W, Pepelnik R, Theopold F, Rademacher P (1992a) Deposition atmosphärischer Spurenstoffe und Stoffflüsse im Ökosystem Wald. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden am Standort “Posttum”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 11–59Google Scholar
  22. Michaelis W, Pepelnik R, Prange A (1992b) Application of TXRF in environmental research. In: Barret CS, Gilfrich JV, Huang TC, Jenkins R, McCarthy GJ, Predecki PK, Ryon R, Smith DK (eds) Advances in X-ray analysis, vol 35B. Plenum Press, New York, pp 953–958CrossRefGoogle Scholar
  23. Michaelis W, Pepelnik R, Rademacher P, Riebesell M (1992c) Transfer of atmospheric pollutants into a forest ecosystem. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier, London, pp 596–597Google Scholar
  24. Nguyen VD, Valenta P (1978) KFA Patent 2831 8403Google Scholar
  25. Nürnberg HW, Valenta P, Nguyen VD, Gödde M, Urano de Carvalho E (1984) Studies on the deposition of acid and of ecotoxic heavy metals with precipitates from the atmosphere. Fresenius Z Anal Chem 317: 314–323CrossRefGoogle Scholar
  26. Panten A (1990) Analyse des Elementgehalts der Kronentraufe unter Fichten in einem geschädigten Waldgebiet. Diplomarbeit, Fachbereich Angewandte Naturwissenschaften, Fachhochschule LübeckGoogle Scholar
  27. Pepelnik R, Erbslöh B, Michaelis W, Prange A (1993) Determination of trace element deposition into a forest ecosystem using total-reflection X-ray fluorescence. Spectrochim Acta 48B (2): 223–229Google Scholar
  28. Pepelnik R, Prange A, Niedergesäß R (1994) Comparative study of multi-element determination using inductively coupled plasma mass spectrometry, total-reflection X-ray fluorescence spectrometry and neutron activation analysis. J Anal Atom Spectrom 9: 1071–1074CrossRefGoogle Scholar
  29. Prange A (1993) Totalreflexions-Röntgenfluoreszenz. Nachr Chem Tech Lab 41 (1): 40–45CrossRefGoogle Scholar
  30. Prange A, Schwenke H (1992) Trace element analysis using total-reflection X-ray fluorescence spectrometry. In: Barret CS, Gilfrich JV, Huang TC, Jenkins R, McCarthy GJ, Predecki PK, Ryon R, Smith DK (eds) Advances in X-ray analysis, vol 35B. Plenum Press, New York, pp 899–923CrossRefGoogle Scholar
  31. Prange A, Knöchel A, Michaelis W (1985) Multi-element determination of dissolved heavy metal traces in sea-water by total-reflection X-ray fluorescence spectrometry. Anal Chim Acta 172: 79–100CrossRefGoogle Scholar
  32. Prange A, Böddeker H, Michaelis W (1989) Multi-element determination of trace elements in whole blood and blood serum by TXRF. Fresenius Z Anal Chem 335: 914–918CrossRefGoogle Scholar
  33. Prange A, Kramer K, Reus U (1991) Determination of trace element impurities in ultrapure reagents by total-reflection X-ray spectrometry. Spectrochim Acta 46B (10): 1385–1393Google Scholar
  34. Prange A, Böddeker H, Kramer K (1993) Determination of trace elements in river-water using total-reflection X-ray fluorescence. Spectrochim Acta 48B (2): 207–215Google Scholar
  35. Prange A, Reus U, Böddeker H, Fischer R, Adolf FP (1995) Microanalysis in forensic science: characterization of single textile fibers by total-reflection X-ray fluorescence. Anal Sci 11: 483–487CrossRefGoogle Scholar
  36. Rademacher P, Ulrich B, Michaelis W (1992) Bilanzierung der Elementvorräte und Elementflüsse innerhalb der Ökosystemkompartimente Krone, Stamm, Wurzel und Boden eines belasteten Fichtenbestandes am Standort “Postturm”. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 149–186Google Scholar
  37. Rao AK, Whitby KT (1978) Non-ideal collection characteristics of inertial impactors, parts I and II. J Aerosol Sci 9: 77–100CrossRefGoogle Scholar
  38. Röbig G, Becker KH, Hessin A, Porstendörfer J, Scheibel HG (1980) A cascade impactor calibration for measurements of activity size distributions in the atmosphere. In: Gesellschaft für Aerosolforschung Schmallenberg (ed) Proc 8th Conf Aerosols in Science, Medicine and Technology, pp 96–102Google Scholar
  39. Schönburg M (1987) Radiometrische Datierung und quantitative Elementbestimmung in Sediment-Tiefenprofilen mit Hilfe kernphysikalischer sowie Röntgenfluoreszenz- und atomemissionsspektrometrischer Verfahren. Thesis, University of Hamburg. GKSS Forschungszentrum Geesthacht, GKSS 87/E/54Google Scholar
  40. Schönburg M, Mengelkamp HT (1989) Turbulente Flüsse in der atmosphärischen Grenzschicht über einem Waldgebiet. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF) (ed) Wechselwirkung Atmosphäre-Biosphäre. Thenée Druck, Bonn, pp 5–7Google Scholar
  41. Schultz J (1991) Untersuchung von Traufenwasser und Bodenlösung auf Nähr- und Schadelemente - Versuch einer Bilanz. Diplomarbeit, Technische Universität BerlinGoogle Scholar
  42. Schwenke H, Knoth J (1982) A highly sensitive energy-dispersive X-ray spectrometer with multiple total reflection of the exciting beam. Nucl Instr Methods 193: 239–243CrossRefGoogle Scholar
  43. Schwenke H, Knoth J, Michaelis W (1980) Ultra-sensitive trace element analysis of environmental samples using advanced TRXRF techniques. In: Vogt JR (ed) Proc 4th Int Conf Nucl Methods Environ Energy Res, Columbia. CONF-800 433, GKSS 80/E/39, pp 313–320Google Scholar
  44. Stößel RP (1986) Untersuchungen zur Naß- und Trockendeposition von Schwermetallen auf der Insel Pellworm. Thesis, University of Hamburg. GKSS Forschungszentrum Geesthacht, GKSS 87/E/34Google Scholar
  45. Stößel RP, Prange A (1985) Determination of trace elements in rainwater by total-reflection X-ray fluorescence. Anal Chem 57: 2880–2885CrossRefGoogle Scholar
  46. Winkler P (1974) Relative humidity and the adhesion of atmospheric particles on the plates of impactors. J Aerosol Sci 5: 235–240CrossRefGoogle Scholar
  47. Winkler P (1985) Verfahren der Depositionsmessung. Staub-Reinh Luft 45, 6: 256–260Google Scholar
  48. Winkler P (1993a) Principles of automatic rain detection. Meteorol Z,NF 2: 27–34Google Scholar
  49. Winkler P (1993b) Response of precipitation sensors to rain. Meteorol Z, NF 2: 35–44Google Scholar
  50. Winkler P, Jobst S, Harder C (1989) Meteorologische Prüfung und Beurteilung von Sammelgeräten für die nasse Deposition. Gesellschaft für Strahlen- und Umweltforschung (GSF), Neuherberg, BPT-Bericht 1 /89Google Scholar
  51. Winkler P, Riedl J, Lang P (1993) A threshold intensity to standardize wet deposition. Meteorol Z, NF 2: 21–26Google Scholar
  52. Wobrauschek P, Aiginger H (1975) Total-reflection X-ray fluorescence spectrometric determination of elements in nanogram amounts. Anal Chem 47: 852–855CrossRefGoogle Scholar
  53. Yoneda Y, Horiuchi T (1971) Optical flats for use in X-ray spectrochemical microanalysis. Rev Sci Instrum 42: 1069–1070CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.GKSS Research Centre GeestchachtGeesthachtGermany

Personalised recommendations