Advertisement

General Outline of the Measuring Station

Chapter
  • 124 Downloads

Abstract

From the outset, the present study was designed to determine fluxes (cf. Chap. 1). A special tower was erected for the installation of the equipment which is necessary to take samples of the various pollutants and to derive the appropriate meteorological auxiliary quantities (Michaelis et al. 1988, 1989a, b, 1990, 1992b,c; Michaelis and Theopold 1993). The tower was a 48m-high triangular lattice mast with favourable aerodynamic properties. It stood on a concrete base and was braced at four altitudes to three gravel-filled 10 m3 containers by 10 mm diameter steel cables. It was positioned 124 m northeast of the “Postturm” in an area characterized by a passably preserved tree population, so that the conditions for deposition measurements were rather favourable, in contrast to the conditions at the postal tower where the stand was already markedly cleared and where representative deposition measurements would have been practically impossible. The treetop height at the measuring station was about 26 m.

Keywords

General Outline German Bight Concrete Base Deposition Measurement Suction Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brückmann A (1988) Radionuklidbilanz von 4 Waldökosystemen nach dem Reaktorunfall in Tschernobyl und eine Bestimmung der trockenen Deposition. Diplomarbeit, Forstwissenschaftlicher Fachbereich, Universität GöttingenGoogle Scholar
  2. Grosch S, Schmitt G (1988) Experimental investigations on the deposition of trace elements in forest areas. In: Grefen K, Löbel J (eds) Environmental meteorology. Kluwer, Dordrecht, pp 201–216Google Scholar
  3. Hertlein F (1990) Untersuchungen zur Anwendung der Gradientenmethode auf luftgetragene Partikel. Diplomarbeit, Fachbereich Angewandte Naturwissenschaften, Fachhochschule LübeckGoogle Scholar
  4. Höfken KD, Gravenhorst G (1983) Untersuchung über die Deposition atmosphärischer Spurenstoffe in Buchen- und Fichtenwald. In: UBA-Berichte 6 /83, Teil II. Schmidt-Verlag, BerlinGoogle Scholar
  5. Jonas R (1984) Ablagerung und Bindung von Luftverunreinigungen an Vegetation und anderen atmosphärischen Grenzflächen. Kernforschungsanlage Jülich, KFA-Jül-1949Google Scholar
  6. Jonas R, Vogt KJ (1982) Untersuchungen zur Ermittlung der Ablagerungsgeschwindigkeit von Aerosolen auf Vegetation und anderen Probenahmeflächen. Kernforschungsanlage Jülich. KFA-Jül-1780Google Scholar
  7. Michaelis W (1986a) Naß- und Trockendeposition von Schwermetallen. In: Bodenschutz -Lösung durch Technik. Tech Mitt 79, Haus der Technik e.V., Essen, pp 266–271Google Scholar
  8. Michaelis W (1986b) Multielement analysis of environmental samples by total-reflection X-ray fluorescence spectrometry, neutron activation analysis and inductively coupled plasma optical emission spectroscopy. Fresenius Z Anal Chem 324: 662–671CrossRefGoogle Scholar
  9. Michaelis W (1987) Experimental studies on dry deposition of heavy metals and gases. 16th NATO/CCMS Int Tech Meet on Air pollution modeling and its application, April 6–10, 1987, Lindau. Also in: Van Dop H (ed) Air pollution modeling and its application VI. Plenum Press, New York, 1988, pp 61–74Google Scholar
  10. Michaelis W, Prange A (1988) Trace analysis of geological and environmental samples by total-reflection X-ray fluorescence spectrometry. Nucl Geophys 2 (4): 231–245Google Scholar
  11. Michaelis W, Stößel RP (1986) Untersuchungen zur Schwermetalldeposition auf der Insel Pell-worm - ein Beitrag zur Ermittlung des atmosphärischen Schadstoffeintrags in die Nordsee. In: GKSS Annu Rep 1986, GKSS Forschungszentrum Geesthacht, pp 8–23Google Scholar
  12. Michaelis W,Theopold F (1993) Deposition atmosphärischen Ozons und ihre Wirkung auf ein Waldökosystem. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF)(ed) Atmosphärisches Ozon - Prozesse und Wirkungen. Thenée Druck, Bonn, pp 25–27Google Scholar
  13. Michaelis W, Schönburg M, Stößel RP (1988) Trocken- und Naßdeposition von Schwermetallen und Gasen. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 88/E/55, pp 19–59Google Scholar
  14. Michaelis W, Schönburg M, Stößel RP (1989a) Deposition of atmospheric pollutants into a North German forest ecosystem. In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 3–12Google Scholar
  15. Michaelis W, Schönburg M, Stößel RP (1989b) Schadstofftransfer in der Grenzschicht Atmosphäre-Vegetation. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF) (ed) Wechselwirkung Atmosphäre-BioSphäre, Thenée Druck, Bonn, pp 29–33Google Scholar
  16. Michaelis W, Pepelnik R, Prange A (1992a) Application of TXRF in environmental research. PICXAM - Pacific International Congress on X-Ray Analytical Methods, August 7–16, 1991, Hilo and Honolulu. In: Barret CS, Gilfrich JV, Huang TC, Jenkins R, McCarthy GJ, Predecki PK, Ryon R, Smith DK (eds) Advances in X-ray analysis, vol 35B. Plenum Press, New York, London, pp 953–958CrossRefGoogle Scholar
  17. Michaelis W, Pepelnik R, Rademacher P, Riebesell M (1992b) Transfer of atmospheric pollutants into a forest ecosystem. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier, London, New York, pp 596–597Google Scholar
  18. Michaelis W, Pepelnik R, Theopold F, Rademacher P (1992c) Deposition atmosphärischer Spurenstoffe und Stoffflüsse im Ökosystem Wald. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 11–59Google Scholar
  19. Pepelnik R, Erbslöh B, Michaelis W, Prange A (1993) Determination of trace element deposition into a forest ecosystem using total-reflection X-ray fluorescence. Spectrochim Acta 48B (2): 223–229Google Scholar
  20. Prange A, Schwenke H (1992) Trace element analysis using total-reflection X-ray fluorescence spectrometry. PICXAM - Pacific International Congress on X-Ray Analytical Methods, August 7–16, 1991, Hilo and Honolulu. In: Barret CS, Gilfrich JV, Huang TC, Jenkins R, McCarthy GJ, Predecki PK, Ryon R, Smith DK (eds) Advances in X-ray analysis, vol 35B. Plenum Press, New York, pp 899–923CrossRefGoogle Scholar
  21. Sehmel GA, Hodgson WH (1978) A model for predicting dry deposition of particles and gases to environmental surfaces. Batelle Richland, Washington, PNL-SA-6721Google Scholar
  22. Stößel RP (1987) Untersuchungen zur Naß-und Trockendeposition von Schwermetallen auf der Insel Pellworm. GKSS Forschungszentrum Geesthacht, GKSS 87/E/34Google Scholar
  23. Stößel RP, Prange A (1985) Determination of trace elements in rainwater by total-reflection X-ray fluorescence. Anal Chem 57: 2880–2885CrossRefGoogle Scholar
  24. Waraghai A, Gravenhorst G (1989) Dry deposition of atmospheric particles to an old spruce stand. In: Georgii HW (ed) Mechanismus and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 77–86Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.GKSS Research Centre GeestchachtGeesthachtGermany

Personalised recommendations