Advertisement

Air Pollution pp 149-166 | Cite as

Impact of Gaseous Pollutants on the Forest Ecosystem

Chapter
  • 125 Downloads

Abstract

Of particular interest are the findings that high concentrations of sulphur dioxide, nitrogen monoxide, nitrogen dioxide and ozone cause marked alterations in the concentration of carbon dioxide (Michaelis et al. 1988, 1989a,b, 1990, 1991, 1992; Michaelis and Theopold 1993). The temporal behaviour and the dimensions of this effect depend on the pollutant considered and its concentration. Such episodes occur at any time of the day and also during the vegetation rest. A general feature is an increase in the concentration of CO2. The effect is superimposed upon the normal diurnal and seasonal variation. The amplitude often markedly exceeds the usual rise during the night, and the day-night rhythm can be changed over several days. As will be shown in Section 13.2, the events are characterized by fluxes of opposite sign, i.e. the deposition of pollutants causes a release of CO2 from the ecosystem. These findings may be interpreted as the outcome of stress conditions. Such phenomena have to date not been reported in the literature on forest decline field studies.

Keywords

Forest Ecosystem Turbulent Flux Gaseous Pollutant Nitrogen Dioxide Nitrogen Monoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt U, Seufert G, Nobel W (1982) Die Beteiligung von Ozon an der Komplexkrankheit der Tanne (Abies albaMill.) - eine prüfenswerte Hypothese. Staub-Reinh Luft 4(2),6: 243–247Google Scholar
  2. Brumme R (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps. Plant Soil 168–169: 593–600CrossRefGoogle Scholar
  3. Brumme R, Beese F (1992) Effects of liming and nitrogen fertilization on emissions of CO2 and N2O from a temporate forest. J Geophys Res 97, D12: 12 851–12 858Google Scholar
  4. Brumme R, Beese F (1995) Automated monitoring of biological trace gas production and consumption. In: Alef K, Mannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 468–472Google Scholar
  5. Hager H (1975) Kohlendioxid - Konzentrationen, Flüsse and Bilanzen in einem Fichtenhochwald. Münchner Universitäts-Schriften, Fachbereich Physik, Nr. 26Google Scholar
  6. Keller T (1976) Auswirkungen niedriger SO2-Konzentrationen auf junge Fichten. Schweiz Z Forstwesen 127: 237–251Google Scholar
  7. Küppers K, Klumpp G (1988) Effects of ozone, sulfur dioxide, and nitrogen dioxide on gas exchange and starch economy in Norway spruce (Picea abies(L.) Karst.). GeoJournal 17 (2): 271–275CrossRefGoogle Scholar
  8. Lalk I, Hartmann A, Dörffling K (1992) Wirkung kurzzeitiger Schadgas-Expositionen (SO2, NO2, O3) auf geklonte Jungfichten im Simulationsexperiment. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschüden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 309–340Google Scholar
  9. Landolt W (1982) Der Einfluß einer praxisnahen SO2-Begasung auf das 14C-Fixierungsmuster von Buchen (Fagus silvaticaL.). Eur J For Pathol 12: 331–339CrossRefGoogle Scholar
  10. Lange OL, Zellner H (1986) Physiologische Veränderungen bei geschädigten Bäumen. In: Führ F, Ganser S, Kloster G, Prinz B, Stüttgen E (eds) Statusseminar 1985 der Arbeitsgruppe “Waldschäden/Luftverunreinigungen”, Kernforschungsanlage Jülich, pp 326–338Google Scholar
  11. Lange OL, Gebel J, Schulze ED, Walz H (1985) Eine Methode zur raschen Charakterisierung der photosynthetischen Leistungsfähigkeit von Bäumen unter Freilandbedingungen - Anwendung zur Analyse “neuartiger Waldschaden” bei der Fichte. Forstwiss Centralbl 104: 186–198CrossRefGoogle Scholar
  12. Lange OL, Führer G, Gebel J (1986a) Rapid field determination of photosynthetic capacity of spruce twigs (Picea abies) at saturating ambient CO2. Trees 1: 70–77CrossRefGoogle Scholar
  13. Lange OL, Gebel J, Zellner H, Schramel P (1986b) Photosynthesekapazität und Magnesiumgehalte verschiedener Nadeljahrgänge bei der Fichte in Waldschadensgebieten des Fichtelgebirges. In: Führ F, Ganser S, Kloster G, Prinz B, Stüttgen E (eds) Statusseminar 1985 der Arbeitsgruppe “Waldschaden/Luftverunreinigungen”, Kernforschungsanlage Jülich, pp 127–147Google Scholar
  14. Lange OL, Zellner H, Gebel J, Schramel P, Köstner B, Czygan FC (1987) Photosynthetic capacity, chloroplast pigments, and mineral content of the previous year’s spruce needles with and without the new flush: analysis of the forest-decline phenomenon of needle bleaching. Oecologia 73: 351–357CrossRefGoogle Scholar
  15. Lange OL, Weikert RM, Wedler M, Gebel J, Heber U (1989a) Photosynthese und Nährstoffversorgung von Fichten aus einem Waldschadensgebiet auf basenarmen Untergrund. Allg Forst Z 3 /1989: 55–64Google Scholar
  16. Lange OL, Heber U, Schulze ED, Ziegler H (1989b) Atmospheric pollutants and plant metabolism. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecological Studies 77. Springer, Berlin Heidelberg New York, pp 238–273CrossRefGoogle Scholar
  17. Lichtenthaler HK (1984) Luftschadstoffe als Auslöser des Baumsterbens. Naturwiss Rundsch 37 (7): 271–277Google Scholar
  18. Loftfield NS, Brumme R, Beese F (1992) Automated monitoring of nitrous oxide and carbon dioxide flux from forest soils. Soil Sci Soc Am J 56: 1147–1150CrossRefGoogle Scholar
  19. Michaelis W,Theopold F (1993) Deposition atmosphärischen Ozons und ihre Wirkung auf ein Waldökosystem. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF)(ed) Atmosphärisches Ozon. Prozesse und Wirkungen. Thenée Druck, Bonn, pp 25–27Google Scholar
  20. Michaelis W, Schönburg M, Stößel RP (1988) Trocken- und Naßdeposition von Schwermetallen und Gasen. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS88/E/55, pp 19–59Google Scholar
  21. Michaelis W, Schönburg M, Stößel RP (1989a) Deposition of atmospheric pollutants into a North German forest ecosystem. In: Georgii HW(ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 3–12Google Scholar
  22. Michaelis W, Schönburg M, Stößel RP (1989b) Schadstofftransfer in der Grenzschicht Atmosphäre-Vegetation. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF) (ed) Wechselwirkung Atmosphäre-Biosphäre. Thenée Druck, Bonn, pp 29–33Google Scholar
  23. Michaelis W, Pepelnik R, Rademacher P, Riebesell M (1990) Wechselwirkung zwischen Luftschadstoffen und Vegetation. In: GKSS Jahresbericht 1990, GKSS Forschungszentrum Geesthacht, pp 42–55Google Scholar
  24. Michaelis W, Pepelnik R, Rademacher P, Riebesell M (1991) Transfer of atmospheric pollutants into a forest ecosystem. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier, London, pp 596–597Google Scholar
  25. Michaelis W, Pepelnik R, Theopold F, Rademacher P (1992) Deposition atmosphärischer Spurenstoffe und Stoffflüsse im Ökosystem Wald. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 11–59Google Scholar
  26. Oren R, Zimmermann R (1989) CO2 assimilation and the carbon balance of healthy and declining Norway spruce stands. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecological Studies 77. Springer, Berlin Heidelberg New York, pp 352–369CrossRefGoogle Scholar
  27. Pfanz H, Martinoia E, Lange OL, Heber U (1987a) Mesophyll resistances to SO2 fluxes into leaves. Plant Physiol 85: 922–927CrossRefGoogle Scholar
  28. Pfanz H, Martinoia E, Lange OL, Heber U (1987b) Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiol 85: 928–933CrossRefGoogle Scholar
  29. Saxe H, Murali NS (1989a) Diagnostic parameters for selecting against novel spruce (Picea abies) decline. I. Tree morphology and photosynthesis response to acute SO2 exposures. Physiol Plant 76: 340–348Google Scholar
  30. Saxe H, Murali NS (1989b) Diagnostic parameters for selecting against novel spruce (Picea abies) decline. III. Response of photosynthesis and transpiration to O3 exposures. Physiol Plant 76: 356–361Google Scholar
  31. Vogels K, Guderian R, Masuch G (1986) Studies on Norway spruce (Picea abiesKarst.) in damaged forest stands and in climatic chamber experiments. In: Schneider T (ed) Acidification and its policy implications. Studies in Environmental Science 30, Elsevier, Amsterdam, pp 171–186CrossRefGoogle Scholar
  32. World Health Organization (1985) Air quality guidelines — ecological effects of air pollutants. ICP/CEH 902/m 71 ( S), GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.GKSS Research Centre GeestchachtGeesthachtGermany

Personalised recommendations