Air Pollution pp 127-148 | Cite as

Concentrations and Deposition of Gaseous Pollutants: SO2, NO2, NO, NH3 and O3



Depending on the position of the measuring site relative to conurbations, power stations, centres of traffic, industry and agriculture, the atmospheric gas concentrations are subject to the influence of the current weather conditions. Such phenomena which have already been described for the particulate concentrations and the dry deposition of trace elements (Chap. 9) find an analogue above all in the case of the sulphur dioxide immission, which at the “Postturm” investigation site is determined to a high degree by emissions in the brown coal districts in southeast Germany, in spite of the rather great distance involved. In this regard the region Halle-Leipzig-Bitterfeld is of particular importance. The influence should become evident at wind directions from southeast to south-southeast. This is impressively substantiated by Fig. 12.1a which shows the sum of the concentration values per 5° sector element, normalized to the frequency distribution of the wind direction (Michaelis et al. 1990, 1992). The diagram represents the conditions at the early stage of the project, i.e. in the period 1987/1988. Developments after the German reunification will be discussed in Section 12.2.


Wind Direction Diurnal Variation Nitrogen Oxide Global Radiation Gaseous Pollutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker KH, Fricke W, Löbel J, Schurath (1985) Formation, transport, and control of photochemical oxidants. In: Guderian R (ed) Air pollution by photochemical oxidants. Formation, transport, control, and effects on plants. Ecological Studies 52. Springer, Berlin Heidelberg New York, pp 3–125Google Scholar
  2. Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meterol Soc 38: 238–290Google Scholar
  3. Derwent RG, Hov Ø (1979) Computer modeling studies of photochemical air pollution formation in north-west Europe. Environ Med Sci Div, AERE Harwell, UKGoogle Scholar
  4. Derwent RG, Hov Ø (1980) Computer modeling studies of the impact of vehicle exhaust emission controls on photochemical air pollution in the United Kingdom. Environ Sci Technol 14: 1360–1366CrossRefGoogle Scholar
  5. Droppo JG (1985) Concurrent measurements of ozone dry deposition using eddy correlation and profile flux methods. J Geophys Res 90: 2110–2118CrossRefGoogle Scholar
  6. Forschungsbeirat Waldschäden/Luftverunreinigungen der Bundesregierung und der Länder (1986). 2. Bericht. Karl Elser Druck GmbH, MühlackerGoogle Scholar
  7. Jonas R (1983) Ablagerungsgeschwindigkeit von Aerosolen und Gasen auf Vegetation und ebene Oberflächen. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF)(ed) Luftreinhaltung - Luftverschmutzung. Thenée Druck, Bonn, pp 24–26Google Scholar
  8. Kilz E (1987) Charakterisierung des Standortes Kälbelescheuer. In: Siefermann-Harms D, Kilz E (eds) Interdisziplinärer PEF-Forschungsschwerpunkt Kälbelescheuer/Südschwarzwald. Kernforschungszentrum Karlsruhe, KfK-PEF 10Google Scholar
  9. Kley D, Volz-Thomas A (1990) Die Belastung der Umwelt durch troposphärisches Ozon. In: Jahresbericht 1990. Forschungszentrum Jülich GmbH, JülichGoogle Scholar
  10. Kley D, Geiss H, Heil T, Holzapfel C (1990) Ozon in Deutschland. Die Belastung durch Ozon in ländlichen Gebieten im Kontext der neuartigen Waldschäden. Monographien des Forschungszentrums Jülich GmbH, Band 2. D. Gehler, Graphische Kunstanstalt DürenGoogle Scholar
  11. Kley D, Geiss H, Klemp D, Kramp F, Su Y, Volz-Thomas A (1993) The importance of hydrocarbon measurements. In: Borrell PM (ed) Proceedings of EUROTRAC Symposium’92. SPB Academic Publishing bv, The Hague, pp 70–79Google Scholar
  12. Michaelis W,Theopold F (1993) Deposition atmosphärischen Ozons und ihre Wirkung auf ein Waldökosystem. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF)(ed) Atmosphärisches Ozon. Prozesse und Wirkungen. Thenée Druck, Bonn, pp 25–27Google Scholar
  13. Michaelis W, Schönburg M, Stößel RP (1988) Trocken-und Naßdeposition von Schwermetallen und Gasen. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 88/E/55, pp 19–59Google Scholar
  14. Michaelis W, Schönburg M, Stößel RP (1989a) Deposition of atmospheric pollutants into a North German forest ecosystem. In: Georgii HW(ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 3–12Google Scholar
  15. Michaelis W, Schönburg M, Stößel RP (1989b) Schadstofftransfer in der Grenzschicht Atmosphäre-Vegetation. In: Arbeitsgemeinschaft der Großforschungseinrichtungen (AGF) (ed) Wechselwirkung Atmosphäre-Biosphäre. Thenée Druck, Bonn, pp 29–33Google Scholar
  16. Michaelis W, Pepelnik R, Rademacher P, Riebeseil M (1990) Wechselwirkung zwischen Luftschadstoffen und Vegetation. In: GKSS Jahresbericht 1990. GKSS Forschungszentrum Geesthacht, pp 42–55Google Scholar
  17. Michaelis W, Pepelnik R, Rademacher P, Riebesell M (1991) Transfer of atmospheric pollutants into a forest ecosystem. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier, London, pp 596–597Google Scholar
  18. Michaelis W, Pepelnik R, Theopold F, Rademacher P (1992) Deposition atmosphärischer Spurenstoffe und Stoffflüsse im Ökosystem Wald. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS Forschungszentrum Geesthacht, GKSS 92/E/100, pp 11–59Google Scholar
  19. Mihelcic D, Klemp D, Müsgen P, Pätz HW, Volz-Thomas A (1993) Simultaneous measurements of peroxy and nitrate radicals at Schauinsland. J Atmos Chem 16: 313–335CrossRefGoogle Scholar
  20. Prinz B (1982) Wirkungen von Luftverunreinigungen auf Pflanzen und Möglichkeiten zum verbesserten Schutz der Vegetation in der Bundesrepublik Deutschland. In: Rat von Sachverständigen für Umweltfragen (ed) Materialien zu Energie und Umwelt. Kohlhammer-Verlag, StuttgartGoogle Scholar
  21. Prinz B, Brandt CJ (1980) Study on the impact of the principal atmospheric pollutants on the vegetation. In: Commission of the European Community (ed) EUR 6644 EN, BrusselsGoogle Scholar
  22. Samson PJ (1978) Nocturnal ozone maxima. Atmos Environ 12: 951–955PubMedCrossRefGoogle Scholar
  23. Seinfeld JH (1980) Lectures in atmospheric chemistry. Monograph series, vol 76, no 12. American Institute of Chemical Engineers, New YorkGoogle Scholar
  24. Volz-Thomas A, Flocke F, Garthe HJ, Geiss H, Gilge S, Heil T, Kley D, Klemp D, Kramp F, Mihelcic D, Pätz HW, Schultz M, Su Y (1993) Photo-oxidants and precursors at Schauinsland, Black Forest. In: Borrell PM (ed) Proceedings of EUROTRAC Symposium’92. SPB Academic Publishing bv, The Hague, pp 98–103Google Scholar
  25. Winkler P (1980) Störung der nächtlichen Grenzschicht. Meteorol Rundsch 33: 90–94Google Scholar
  26. World Health Organization (1985) Air quality guidelines — ecological effects of air pollutants. ICP/CEH 902/m 71 ( S), GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.GKSS Research Centre GeestchachtGeesthachtGermany

Personalised recommendations