Skip to main content

Part of the book series: Springer Lab Manuals ((SLM))

  • 1453 Accesses

Abstract

The generation of characteristic signatures from virtually any nucleic acid, even of anonymous nature, has been made possible by the invention of nucleic acid scanning (Livak et al. 1992; Bassam et al. 1995). These signatures are composed of arbitrary collections of amplification products that result from the targeting of a multiplicity of anonymous sites (amplicons) in template DNA or RNA molecules. The targeted sites are amplified with one or more oligodeoxynucleotides to produce arbitrary but entirely characteristic “fingerprint” patterns. Nucleic acid scanning allows detection of polymorphic DNA or RNA without prior knowledge of sequence or cloned and characterized probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich J, Cullis CA (1993) RAPD analysis in flax. Optimization of yield and reproducibility using Klen Taq 1 DNA polymerase, Chelex 100, and gel purification of genomic DNA. Plant Mol Biol Rep 11:128–141

    Article  CAS  Google Scholar 

  • Bassam BJ, Bentley S (1994) DNA fingerprinting using arbitrary primer technology (APT): a tool or a torment. Australasian Biotechnol 4:232–236

    CAS  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in Polyacrylamide gels. Anal Biochem 196:81–84

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1992) DNA amplification fingerprinting of bacteria. Appl Microbiol Biotech 38:70–76

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1995) Method for profiling nucleic acids of unknown sequence using arbitrary oligonucleotide primers. US Patent 5,413,909

    Google Scholar 

  • Bej AK, Mahbubani MH (1994) Thermostable DNA polymerases for in vitro DNA amplifications. In: PCR Technology: Current Innovations (Griffin HG and Griffin AM, eds), CRC Press, Boca Raton, pp. 219–237.

    Google Scholar 

  • Caetano-Anollés G (1994) MAAP: a versatile and universal tool for genome analysis. Plant Mol Biol 25:1011–1026

    Article  PubMed  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1994) DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers. Bio/Technology 12:619–623

    Article  PubMed  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1996) Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers. BioTechniques 20:1044–1056

    PubMed  Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 9:553–557

    Article  PubMed  Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1992) Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides. Mol Gen Genet 235:157–165

    Article  PubMed  Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1993) Enhanced detection of polymorphic DNA by multiple arbitrary amplicon profiling of endonuclease digested DNA: identification of markers linked to the supernodulation locus in soybean. Mol Gen Genet 241:57–64

    Article  PubMed  Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1994) Buffer components tailor DNA amplification with arbitrary primers. PCR Methods Applic 4:59–61

    Article  Google Scholar 

  • Callahan LM, Weaver KR, Caetano-Anollés G, Bassam BJ, and Gresshoff PM (1993) DNA fingerprinting of turfgrasses. Int Turfgrass Soc Res J 7:761–767

    Google Scholar 

  • Dieffenbach CW, Dveksler GS (1993) Setting up a PCR laboratory. PCR Methods Applic 3:S2–S7

    Article  CAS  Google Scholar 

  • Dragon EA (1993) Handling reagents in the PCR laboratory. PCR Methods Applic 3:S8–S9

    Article  CAS  Google Scholar 

  • Guidet F (1994) A powerful new technique to quickly prepare hundreds of plant extracts for PCR and RAPD analysis. Nucleic Acids Res 22:1772–1773

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Rafalski JA, Tingey SV, Williams JG (1992) Process of detecting polymorphisms on the basis of nucleotide differences. US Patent 5,126,239

    Google Scholar 

  • Micheli MR, Bova R, Calissano P, D’Ambrosio E (1993) Randomly amplified polymorphic DNA fingerprinting using combinations of oligonucleotide primers. BioTechniques 15:388–390

    PubMed  CAS  Google Scholar 

  • Micheli MR, Bova R, Pascale E, D’Ambrosio E (1994) Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Res 22:1921–1922

    Article  PubMed  CAS  Google Scholar 

  • Prabhu R, Gresshoff PM (1994) Mendelian, maternal and paternal inheritance of polymorphic markers generated by short single arbitrary oligonucleotide primers in soybean. Plant Mol Biol 26:105–116

    Article  PubMed  CAS  Google Scholar 

  • Roux KH (1995) Optimization and troubleshooting in PCR. PCR Methods Applic 4:S185-S194

    Article  CAS  Google Scholar 

  • Sarkar G, Sommer SS (1990) Sheding light on PCR contamination. Nature 343 27

    Article  PubMed  CAS  Google Scholar 

  • Sarkar G, Sommer SS (1991) Parameters affecting susceptibility of PCR contamination to UV inactivation. BioTechniques 10:590–594

    PubMed  CAS  Google Scholar 

  • Schierwater B, Ender A (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res 21:4647–4648

    Article  PubMed  CAS  Google Scholar 

  • Taguchi G (1986) Introduction to quality engineering. In: Asian productivity organisation. UNIPUB, New York, New York

    Google Scholar 

  • Vincent J, Gurling H, Melmer G (1994) Oligonucleotides as short as 7-mers can be used for PCR amplification. DNA & Cell Biol 13:75–82

    Article  CAS  Google Scholar 

  • Venugopal G, Mohapatra S, Salo D, Mohapatra A (1993) Multiple mismatch annealing: basis for random amplified polymorphic DNA fingerprinting. Biochem Biophys Res Commun 197:1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Weaver KR, Callahan LM, Caetano-Anollés G, Gresshoff PM (1995) DNA amplification fingerprinting and hybridization analysis of centipedegrass. Crop Sci 35:881–885

    Article  CAS  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Williams CE, Ronald PC (1994) PCR template-DNA isolated quickly from monocot and dicot leaves without tissue homogenization. Nucleic Acids Res 22:1917–1918

    Article  PubMed  CAS  Google Scholar 

  • Wolff K, Schien ED, Peters-van Rijn J (1993) Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum. Theor Appl Genet 86:1033–1037

    Article  CAS  Google Scholar 

  • Yu K, Pauls KP (1992) Optimization of the PCR program for RAPD analysis. Nucleic Acids Res 20:2606

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caetano-Anollés, G. (1997). DNA Amplification Fingerprinting. In: Micheli, M.R., Bova, R. (eds) Fingerprinting Methods Based on Arbitrarily Primed PCR. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60441-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60441-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47812-3

  • Online ISBN: 978-3-642-60441-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics