Skip to main content

Zusammenfassung

Sowohl die UVB-Phototherapie als auch die systemische Photochemotherapie mit oraler Gabe von Psoralenen und nachfolgender UVA-Bestrahlung (Psoralen + UVA = PUVA) eignen sich zur effektiven Behandlung der Psoriasis, d. h. einer entzündlichen Hauterkrankung, für die eine Hyperproliferation epidermaler Keratinozyten charakteristisch ist [33, 39, 40]. Daher wurde zunächst davon ausgegangen, daß die therapeutische Effektivitäst beider Verfahren auf ihrer Fähigkeit beruht, antiproliferativ zu wirken. Für beide Therapieformen kam es jedoch in der Folgezeit zu einer umfassenden Erweiterung des Indikationsspektrums, das heute Hauterkrankungen umfaßt, bei denen hyperproliferative Prozesse von keiner oder untergeordneter, immunologische Veränderungen jedoch von herausragender Bedeutung sind [53]. Es wurde daher bereits in den siebziger Jahren spekuliert, daß die therapeutische Effektivität der Photo- und Photochemotherapie wesentlich auf der Fähigkeit ultravioletter Strahlung beruht, das Immunsystem Haut zu beeinflussen [21]. Eine Vielzahl der mitterweile nachgewiesenen immunmodulatorischen Effekte lassen sich zugleich bei UVB,- UVA- und PUVA-Therapie beobachten, obwohl diese Therapieprinzipien auf unterschiedlichen photobiologischen Mechanismen beruhen. Das vorliegende Kapitel orientiert sich daher nicht an einzelnen Therapieformen; vielmehr werden allgemein gültige, mit einer Photo- oder Photochemotherapie einhergehende Wirkprinzipien vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aberer W, Schuler G, Stingi H, Honigsmann H, Wolff K (1981) Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol 76:202–220.

    Article  PubMed  CAS  Google Scholar 

  2. Aragane Y, Pöppelmann B, Luger TA, Ariizumi K, Takashima A, Schwarz T (1996) Molecular mechanisms involved in UVB-mediated suppression of interleukin-7 gene expression in PAM 212 cells (Abstr). J Invest Dermatol 105:460.

    Google Scholar 

  3. Baadsgard O, Lisby S, Lange-Wantzin G, Wulf H, Cooper KD (1989) Rapid recovery of Langerhans cell alloreactivity, without induction of autoreactivity, after in vivo ultraviolet A, but not ultraviolet B exposure of human skin. J Immunol 142:4213–4217.

    Google Scholar 

  4. Bevilaqua PM, Edelson RL, Gasparro FP (1991) High performance liquid chromatography analysis of 8-methoxypsoralen monoadducts and crosslinks in lymphocytes and keratinocytes. J Invest Dermatol 97:151–155.

    Article  Google Scholar 

  5. Epstein JH (1968) UVL-induced stimulation of DNA synthesis in hairless mouse epidermis. J Invest Dermatol 52:445–448.

    Google Scholar 

  6. Everett M, Yeargers E, Sayre R, Olson R (1966) Penetration of epidermis by ultraviolet rays. Photochem Photobiol 5:533–542.

    Article  PubMed  CAS  Google Scholar 

  7. Fisher DE (1994) Apoptosis in cancer therapy: Crossing the threshold. Cell 78: 539–542.

    Article  PubMed  CAS  Google Scholar 

  8. Gasparro FP, Bagel J, Edelson RL (1985) HPLC analysis of 8-MOP photoadducts in calf thymus DNA, poly(dAdT.dAdT), poly(dA.dT9) and poly(dT). Photochem Photobiol 42:98–101.

    Article  Google Scholar 

  9. Gasparro FP, Bevilaqua PM, Goldminz D (1990) Repair of 8-MOP photoadducts in human lymphocytes. In: Sutherland BM, Woodhead AD (eds) DNA damage and repair in human tissues. Plenum Press, New York, pp 74–187.

    Google Scholar 

  10. Godar DE B (1996) Preprogrammed and programmed cell death mechnisms of apoptosis: UV-induced immediate and delayed apoptosis. Photochem Photobiol 63: 825–830.

    Article  PubMed  CAS  Google Scholar 

  11. Grabbe J, Weker P, Humke S et al. (1996) High-dose UVA1 therapy, but not UVA/UVB therapy, decreases IgE binding cells in lesionai skin of patients with atopic eczema. J Invest Dermatol 107:419–422.

    Article  PubMed  CAS  Google Scholar 

  12. Grether-Beck S, Olaizola-Horn S et al. (1996) Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule-1 gene. Proc Natl Acad Sci USA 93:14586–14591.

    Article  PubMed  CAS  Google Scholar 

  13. Grether-Beck S, Schmitt H, Grewe M, Buettner R, Krutmann J (1997) The balance between expression of transcription factor AP2 and its alternative splice product AP2B controls ultraviolet A radiation (UVAR)-induced ICAM-1 expression in human cells (Abstr). Arch Dermatol Res 289: A3.

    Google Scholar 

  14. Grewe M, Trefzer U, Ballhorn A, Gyufko K, Henninger HP, Krutmann J (1993) Analysis of the mechanism of ultraviolet B radiation induced prostaglandin E2 synthesis by human epidermoid carcinoma cells. J Invest Dermatol 101:528–531.

    Article  PubMed  CAS  Google Scholar 

  15. Grewe M, Gyufko K, Schöpf E, Krutmann J (1994) Lesional expression of interferon- g in atopic eczema. Lancet 343:25–26

    Article  PubMed  CAS  Google Scholar 

  16. Grewe M, Gyufko K, Krutmann J (1995) Interleukin-10 production by cultured human keratinocytes: regulation by ultraviolet B and ultraviolet A1 radiation. J Invest Dermatol 104: 3–6.

    Article  PubMed  CAS  Google Scholar 

  17. Grewe M, Duvic M, Aragane Y, Schwarz T, Ullrich SE, Krutmann J (1995) Lack of induction of IL-10 expression in human keratinocytes. Reply. J Invest Dermatol 106:1330–1331.

    Google Scholar 

  18. Grewe M, Klammer M, Stege H, Krutmann J (1996) Involvement of direct and indirect mechanisms in ultraviolet B radiation (UVBR)-induced inhibition of ICAM-1 expression in human antigen presenting cells (Abstr). J Invest Dermatol 106:933.

    Google Scholar 

  19. Grewe M, Gyufko K, Budnik A, Berneburg M, Ruzicka T, Krutmann J (1996) Interleu-kin-1 receptors type I and type II are differentailly regulated in human keratinocytes by ultraviolet B radiation. J Invest Dermatol 107:865–870.

    PubMed  CAS  Google Scholar 

  20. Khan IU, Boehm KD, Elmets CA (1993) Modulation of IFNy-induced HLA-DR expression on the human keratinocyte cell line SCC-13 by ultraviolet radiation. Photochem Photobiol 57:103–106.

    Article  Google Scholar 

  21. Kripke ML (1981) Immunologic mechanisms in UV radiation carcinogenesis. Adv Cancer Res 34:69–106.

    Article  PubMed  CAS  Google Scholar 

  22. Krueger JG, Wolfe JT, Nabeja RT et al. (1995) Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J Exp Med 1882:2057–2068.

    Article  Google Scholar 

  23. Krutmann J (1994) Regulatory interactions between epidermal cell adhesion molecules and cytokines. In: Luger TA, Schwarz T (eds) Epidermal growth factors and cytokines. Marcel Dekker Ine, New York, pp 415–432.

    Google Scholar 

  24. Krutmann J, Elmets CA (eds) Photoimmunology. Blackwell Science, Oxford, 1995.

    Google Scholar 

  25. Krutmann J, Grewe M (1995) Involvement of cytokines, DNA damage, and reactive oxygen species in ultraviolet radiation-induced modulation of intercellular adhesion molecule-1 expression. J Invest Dermatol 105:67S–70S.

    Article  PubMed  CAS  Google Scholar 

  26. Krutmann J, Koeck A, Schauer E et al. (1990) Tumor necrosis factor b and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression. J Invest Dermatol 95:127–131.

    Article  PubMed  CAS  Google Scholar 

  27. Krutmann J, Khan IU, Wallis RS et al. (1990) The cell membrane is a major locus for ultraviolet-B-induced alterations in accessory cells. J Clin Invest 85:1529–1536.

    Article  PubMed  CAS  Google Scholar 

  28. Krutmann J, Czech W, Parlow F, Trefzer U, Kapp A, Schoepf E, Luger TA (1992) Ultraviolet radiation effects on human keratinocyte ICAM-1 expression: UV-induced inhibition of cytokine induced ICAM-1 mRNA expression is transient, differentially restored for IFN-y versus TNFa, and followed by ICAM-1 induction via a TNFa-like pathway. J Invest Dermatol 98:923–928.

    Article  PubMed  CAS  Google Scholar 

  29. Laskin JD, Lee E, Yurkow EJ, Laskin DL, Gallo MA (1985) A possible mechanism of psoralen phototoxicity not involving direct interaction with DNA. Proc Natl Acad Sci USA 82:6158–6162.

    Article  PubMed  CAS  Google Scholar 

  30. Lisby S, Ralfkier E, Rothlein R, Veijsgard GL (1989) Intercellular adhesion molecule-1 (ICAM-1) expression correlated to inflammation. Br J Dermatol 120:479–484.

    Article  PubMed  CAS  Google Scholar 

  31. Luger TA, Schwarz T (1995) Effects of UV light on cytokines and neuroendocrine hormones. In: Krutmann J, Elmets CA (eds) Photoimmunology. Blackwell, Oxford, pp 55–76.

    Google Scholar 

  32. Marks DI, Fox RM (1991) Mechanism of photochemotherapy induced apoptotic cell death in lymphoid cells. Biochem Cell Biol 69:754–760.

    Article  PubMed  CAS  Google Scholar 

  33. Morison WL (1993) Photochemotherapy. In: Lim HW, Soter NA (eds) Clinical photomedicine. Dekker, New York, pp 327–346.

    Google Scholar 

  34. Morita A, Grewe M, Werfel T, Kapp A, Krutmann J (1996) Ultraviolet A1 radiation differentially affects cytokine production by atopen-specific human T-helper cells (Abstr). J Invest Dermatol 106:932

    Google Scholar 

  35. Morita A, Grewe M, Ahrens C,Grether-Beck S,Ruzicka T, Krutmann J(1996) Ultraviolet A1 radiation effects on cytokine expression in human epidermoid carcinoma cells. Photochem Photobiol (in press)

    Google Scholar 

  36. Morita A, Werfel T, Kapp A et al. (1997) High-dose ultraviolet (UV) A1 therapy works through induction of apoptosis in skin-infiltrating T-helper cells (Abstr). Arch Dermatol Res 289: A12.

    Article  Google Scholar 

  37. Nishigori C, Yarosh DB, Ullrich SE, Vink AA, Bucana CD, Roza L, Krike ML (1996) Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc Natl Acad Sci USA 93:10354–10359.

    Article  PubMed  CAS  Google Scholar 

  38. Norris DA, Lyons B, Middleton MH, Yohn JY, Kashihara-Sawami M (1990) Ultraviolet radiation can either suppress or induce expression of intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured human keratinocytes. J Invest Dermatol 95:132–138.

    Article  PubMed  CAS  Google Scholar 

  39. Paul BS, Larkö O, Swanbeck G, Parrish JA (1993) Therapeutic photomedicine: Phototherapy. In: Fitzpatrick T, Eisen AZ, Wolff K, Freedberg IM, Austen KF (eds) Dermatology in general medicine. McGraw-Hill, New York, pp 1717–1727.

    Google Scholar 

  40. Picot E, Meunier L, Picot-Deheze ML, Peyron JL, Meynadier J (1992) Treatment of psoriasis with a 311 nm UVB lamp. Br J Dermatol 127:509–512.

    Article  PubMed  CAS  Google Scholar 

  41. Recchia G, Cristofolini M, Bordin F (1983) Methylangelicin in the topical treatment photochemotherapy of psoriasis: a preliminary report. Med Biol Environ 11: 471–485.

    Google Scholar 

  42. Roza L, Stege H, Krutmann J (1996) Role of UV-induced DNA damage in phototherapy. In: Hönigsmann H, Jori G, Young AR (eds) The fundamental bases of phototherapy. OEMF spa, Milano, pp 145–152.

    Google Scholar 

  43. Schauer E, Trautinger F, Köck A et al. (1994) Proopiomelanocortin derived peptides are synthesized and released by human keratinocytes. J Clin Invest 93:2258–2262.

    Article  PubMed  CAS  Google Scholar 

  44. Simon JC, Krutmann J, Elmets CA, Bergstresser PR, Cruz D (1992) Ultraviolet B irradiated antigen presenting cells display altered accessory signaling for T cell activation: relevance to immune responses initiated in the skin. J Invest Dermatol 98:66S–69S.

    Article  PubMed  CAS  Google Scholar 

  45. Stege H, Schöpf E, Ruzicka T, Krutmann J (1996) High-dose UVA1 for urticaria pigmentosa. Lancet 347:64.

    Article  PubMed  CAS  Google Scholar 

  46. Stege H, Roza L, Krutmann J (1996) Thymine dimer formation is causally related to ultraviolet B radiation (UVBR)-induced immunosuppression in vivo in human skin (Abstr). J Invest Dermatol 106:923.

    Google Scholar 

  47. Stege H, Berneburg M, Humke S et al. (1997) High-dose ultraviolet A1 (UVA1) radiation therapy for localized scleroderma. J Am Acad Dermatol (in press).

    Google Scholar 

  48. Sumpio DE, Phan SM, Gasparro FP, Deckelbaum LI (1993) Control of smooth muscle proliferation by psoralen photochemotherapy. J Vase Surg 17:1010–1018.

    Article  CAS  Google Scholar 

  49. Tang A, Udey MC (1992) Inhibition of epidermal Langerhans cell function by lowdose ultraviolet B radiation. Ultraviolet B radiation selectively modulates ICAM-1 (CD54) expression by murine Langerhans cells. J Immunol 146:3347–3355.

    Google Scholar 

  50. Tesmann JP, Denfeld RW, Weiss JM, Schöpf E, Simon JC (1996) Effects of UVB-radiation (UVBR) on the functional expression of B7–1 and B7–2 by murine Langerhans cells (LC) (Abstr). J Invest Dermatol 106:824.

    Google Scholar 

  51. Trefzer U, Brockhaus M, Lötscher H et al. (1993) The human 55-kd tumor necrosis factor receptor is regulated in human keratinocytes by TNF5 and by ultraviolet B radiation. J Clin Invest 92:462–470.

    Article  PubMed  CAS  Google Scholar 

  52. Ullrich SE (1995) The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression. Photochem Photobiol 62:389–401.

    Article  PubMed  CAS  Google Scholar 

  53. Volc-Platzer B, Hönigsmann H (1995) Photoimmunology of PUVA and UVB therapy. In: Krutmann J, Elmets CA (eds) Photoimmunology. Blackwell, Oxford, pp 265–273.

    Google Scholar 

  54. Wlascheck M, Heinen G, Poswig A, Schwarz A, Krieg T, Scharfetter-Kochanek K (1994) UVA-induced autocrine stimulation of fibroblasts derived collagenase/MMP-1 by interrelated loops of interkeukin-1 and interleukin-6. Photochem Photobiol 59:550–556.

    Article  Google Scholar 

  55. Wlaschek M, Briviba K, Stricklin GP, Sies H, Scharfetter-Kochanek K (1995) Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. J Invest Dermatol 104:194–198

    Article  PubMed  CAS  Google Scholar 

  56. Yoo EK, Rook AH, Elenitas R, Gasparro FP, Vowels BR (1996) Apoptosis induction by ultraviolet light A and photochemotherapy in cutaneous T-cell lymphoma: Relevance to mechanism of therapeutic action. J Invest Dermatol 107:235–242

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krutmann, J. (1997). Wirkmechanismen der Photo- und Photochemotherapie. In: Krutmann, J., Hönigsmann, H. (eds) Handbuch der dermatologischen Phototherapie und Photodiagnostik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60425-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60425-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64401-6

  • Online ISBN: 978-3-642-60425-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics