Did Erdős Save Western Civilization?

  • Cedric A. B. Smith
Part of the Algorithms and Combinatorics book series (AC, volume 13)


If you stand on the famous Chain bridge in Budapest, you will see below you the broad sweep of the Danube. But this broad river arose from the confluence of many small streams. Indeed, there is a point near St. Moritz, where if a rain drop happens to fall a few centimeters to the north, it will make its way into the Rhine, and so to the North Sea. If it falls a little to the west, it will join the Adda and the Po, and end up in the Adriatic, whereas to the east it would run Into the Inn, the Danube, and the Black Sea. An apparently negligible movement at the start can make a difference of hundreds of kilometers later on.


Span Tree Total Current Electrical Network Vertical Side Rain Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooks, R. L., Smith, C. A. B., Stone, A. H., Tutte, W. T. (1940): The Dissection of Rectangles into Squares. Duke Math. J. 7, 312–340.MathSciNetCrossRefGoogle Scholar
  2. Kirchhoff, G. (1847): Ueber die Auflősung der Gleichungen, auf weiche man bei der Untersüchung der linearen Vertheilung galvanischer Strőme geführt wird. Annalen der Physik und Chemie 72, 497.CrossRefGoogle Scholar
  3. Moroń, Z, (1925): O rozkladach prostokatów na kwadraty; Przegląd Matematyczno-Fizyczny 3 152–153.Google Scholar
  4. Skinner, J. D. (II) (1993): Squared Squares, Who’s Who and What’s What. Lincoln, Nebraska, J. D. Skinner.Google Scholar
  5. Smith, C. A. B. (1972): Electric Currents in Regular Matroids. In Welsh, D. J. A. and Woodall, D. R,, eds., Combinatorics, 262–284. Southend-on-sea, Institute of Mathematics and Applications.Google Scholar
  6. Smith, C. A. B. (1974): Patroids. Journal of Combinatorial Theory 16, 64–76.zbMATHCrossRefGoogle Scholar
  7. Sprague, R. P. (1939): Beispiel einer Zerlegung der Quadrats in lauter verschiedene Quadrate. Matematische Zeitschrift 45, 607–608.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Cedric A. B. Smith
    • 1
  1. 1.The Galton Laboratory, Department of Genetics and BiometryUniversity College LondonLondonUK

Personalised recommendations