On Additive Representation Functions

  • A. Sárközy
  • V. T. Sós
Part of the Algorithms and Combinatorics book series (AC, volume 13)

Abstract

In this paper we give a short survey of additive representation functions, in particular, on their regularity properties and value distribution. We prove a couple of new results and present many related unsolved problems.

Keywords

Regularity Property Arithmetic Progression Counting Function Arithmetic Function Multiplicative Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ajtai, J. Komlós, E. Szemerédi: A dense infinite Sidon-sequence, European J. Comb. 2 (1981), 1–11.MATHGoogle Scholar
  2. 2.
    R. Balasubramanian, A note on a result of Erdős, Sárközy and Sós. Acta Arithmetica 49 (1987), 45–53.MathSciNetMATHGoogle Scholar
  3. 3.
    P. T. Bateman, E. E. Kohlbecker and J. P. Tuli, On a theorem of Erdős and Fuchs in additive number theory, Proc. Amer. Math. Soc. 14 (1963), 278–284.MathSciNetMATHGoogle Scholar
  4. 4.
    B. Bollobas, Random graphs, Academic, New York, 1985.MATHGoogle Scholar
  5. 5.
    S. Chowla, Solution of a problem of Erdős and Turán in additive number theory, Proc. Nat. Acad. Sci. India 14 (1944), 1–2.MathSciNetMATHGoogle Scholar
  6. 6.
    G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312–313.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    P. Erdős, Addendum, On a problem of Sidon in additive number theory and on some related problems, J. London Math. Soc. 19 (1944), 208.Google Scholar
  8. 8.
    P. Erdős, Problems and results in additive number theory, Colloque sur la Théorie des Nombres (CBRM) (Bruxelles, 1956), 127–137.Google Scholar
  9. 9.
    P. Erdős, On the multiplicative representation of integers, Israel J. Math. 2 (1964), 251–261.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    P. Erdős, On some applications of graph theory to number theory, Pubi. Ramanujan Inst. 1 (1969), 131–136.Google Scholar
  11. 11.
    P. Erdős and R. Freud, On Sidon-sequences and related problems, Mat. Lapok 1 (1991), 1–44 (in Hungarian).MATHGoogle Scholar
  12. 12.
    P. Erdős and W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956), 67–73.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arithmetica 6 (1960), 83–110.MathSciNetMATHGoogle Scholar
  14. 14.
    P. Erdős and A. Sárközy. Problems and results on additive properties of general sequences, I, Pacific J. 118 (1985), 347–357.MATHGoogle Scholar
  15. 15.
    P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, II, Acta Math. Hung. 48 (1986), 201–211.CrossRefGoogle Scholar
  16. 16.
    P. Erdős, A. Sárközy and V. T. Sös, Problems and results on additive properties of general sequences, III, Studia Sci. Math. Hung. 22 (1987), 53–63.MATHGoogle Scholar
  17. 17.
    P. Erdős, A. Sárközy and V. T. Sös, Problems and results on additive properties of general sequences, IV. in; Number Theory, Proceedings, Ootacamund, India, 1984, Lecture Notes in Mathematics 1122, Springer-Verlag, 1985; 85–104.Google Scholar
  18. 18.
    P. Erdős, A. Sárközy and V. T. Sös, Problems and results on additive properties of general sequences, V, Monatshefte Math. 102 (1986), 183–197.MATHCrossRefGoogle Scholar
  19. 19.
    P. Erdős, A. Sárközy and V. T. Sós, On sum sets of Sidon sets, I, J. Number theory, to appear.Google Scholar
  20. 20.
    P. Erdős, A. Sárközy and V. T. Sös, On sum sets of Sidon sets, II, Israel J. Math., to appear.Google Scholar
  21. 21.
    P. Erdős, A. Sárközy and V. T. Sös, On additive properties of general sequences, Ann. Discrete Math., to appear.Google Scholar
  22. 22.
    P. Erdős and P. Turán, On a problem of Sidon in additive number theory and some related problems, J. London Math. Soc. 16 (1941), 212–215.MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, New York, 1983.MATHGoogle Scholar
  24. 24.
    E. K. Hayashi, An elementary method for estimating error terms in additive number theory, Proc. Amer. Math. Soc. 52 (1975), 55–59.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    E. K. Hayashi, Omega theorems for the iterated additive convolution of a nonnegative arithmetic function, J. Number Theory 13 (1981), 176–191.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. 35 (1987), 385–394.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    A. Gyárfás, Z. Lehel, Linear sets with five distinct differences among any four elements (to appear).Google Scholar
  28. 28.
    H. L. Montgomery and R. C. Vaughan, On the Erdős-Fuchs theorems, in: A tribute to Paul Erdős, eds. A. Baker, B. Bollobäs and A. Hajnal, Cambridge Univ. Press, 1990; 331–338.Google Scholar
  29. 29.
    H.-E. Richert, Zur multiplikativen Zahlentheorie, J. Reine Angew. Math. 206 (1961), 31–38.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    K. F. Roth, On certain sets of integers, I, J. London Math. Soc. 28 (1953), 104–109.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    K. F. Roth, On certain sets of integers, II, J. London Math. Soc. 29 (1954), 20–26.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    I. Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990), 145–151.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    I. Z. Ruzsa, On the number of sums and differences, Acta Math. Hung. 59 (1992), 439–447.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    A. Sárközy, On a theorem of Erdős and Fuchs, Acta Arithmetica 37 (1980), 333–338.MathSciNetMATHGoogle Scholar
  35. 35.
    J. Schur, Über die Kongruenz x m + y mz m(mod p), Jahresbericht der Deutschen Math. Verein. 25 (1916), 114–117.Google Scholar
  36. 36.
    S. Sidon, Ein Satz ü;ber trigonomische Polynome und seine Anwendung in der Theorie der Fourier-Reihen, Math. Annalen 106 (1932), 536–539.MathSciNetCrossRefGoogle Scholar
  37. 37.
    V.T. Sös, An additive problem on different structures, 3rd Internat. Comb. Conf., San Francisco 1989. Graph Theory, Comb. Alg. and Appl. SIAM, ed. Y. Alavi, F.R.K. Chung, R.L. Graham, B.F. Hsu (1991), 486–508.Google Scholar
  38. 38.
    A. Stöhr: Gelöste und ungelöste Fragen ü;ber Basen der natü;rlichen Zahlen, J. Reine Angew. Math. 194 (1955), 40–65, 111–140.MathSciNetCrossRefGoogle Scholar
  39. 39.
    E. Szemerédi: On a set containing no k elements in an arithmetic progression, Acta Arithmetica 27 (1975), 199–245.MathSciNetMATHGoogle Scholar
  40. 40.
    E. C. Vaughan, On the addition of sequences of integers, J. Number Theory 4 (1972), 1–16.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212–216.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. Sárközy
    • 1
  • V. T. Sós
    • 1
  1. 1.Hungarian Academy of SciencesMathematical InstituteHungary

Personalised recommendations